An open-source application for general-purpose quantum chemical calculation, laying emphasis on excited states and time evolution. It is based on time-dependent density functional theory (TDDFT) and the QM/MM calculation. It enables efficient massive parallel computing up to one hundred thousands processes. It supports the relativistic effect and offers the basis choice between the Gaussian basis and the plane-wave basis.
RESPACK is a first-principles calculation software for evaluating the interaction parameters of materials. It is able to calculate the maximally localized Wannier functions, the RPA response functions, and frequency-dependent electronic interaction parameters. RESPACK receives its input data from a band calculation using norm-conserving pseudopotentials with plane-wave basis sets. Utilities which convert a result of xTAPP or Quantum ESPRESSO to an input for RESPACK are prepared. The software has been used successfully for a wide range of materials such as metals, semiconductors, transition-metal compounds, and organic compounds. It supports OpenMP / MPI parallelization.
An open-source application for first-principles molecular dynamics simulation based on pseudo-potential and plane-wave basis set. This application enables accurate molecular dynamics by density functional theory and Car-Parrinello method. It also supports structure optimization, Born-Oppenheimer molecular dynamics, path-integral molecular dynamics, calculation of response functions, the QM/MM method, and excited-state calculation.
First-principles software based on plane-wave basis and norm-conserving pseudopotential methods. Time-dependent DFT has been implemented. Users can perform real-time simulations for electron-ion dynamics under a time-dependent external field. Pseudopotentials with FPSEID21 format should be used, and those are downloadable from the website.
QMAS is an ab-initio electronic-structure computational code package based on the projector augmented-wave (PAW) with a plane wave basis set. It computes electronic states and various physical properties efficiently with high precision for a wide range of physical systems. It provides geometry optimization, electronic states in a static magnetic field, permittivity distribution at the atomic-scale, energy and stress distribution, positron annihilation parameters, and so forth.
An open-source application for first-principles calculation utilizing pseudo-potentials and plane-wave basis sets. This application is capable of performing electronic structure calculations of a wide range of physical systems such as crystals and surfaces/interfaces. It supports structure relaxation, phonon-dispersion calculation, and molecular dynamics simulation, and can deal with systems with the spin-orbit interaction.
STATE is a first-principles plane-wave pseudo-potential code. It provides electronic state calculations and molecular dynamics simulations. This code is suitable for simulating chemical reactions at solid surfaces and solid–liquid interfaces, i.e., It is able to investigate reaction paths and activation barriers of chemical processes at interfaces. It can also include Van der Waals corrections to conventional density functional theory.
PARATEC is a parallel DFT program package based on plane-wave basis and norm-conserving pseudopotential.
An application for first-principles calculation based on density functional theory. This application is included in Material Sudio, and can evaluate electronic states and properties of various physical systems such as molecules, atomic clusters, crystals, and solid surfaces based on the all-electron method and the pseudopotential method. It can also be applied to evaluation of the chemical reaction such as catalysis and combustion reaction, and is optimized for large-scale parallel computing.
Software for first-principles calculation based on pseudo-potential and plane-wave basis. This software performs electronic-state calculation of various systems by density functional theory, and can treat structure optimization, excited-state analysis, and so on. This software can be applied to many physical phenomena such as catalysis reaction, calculation of phase diagram, etc. There are many users of this payware in the world.