Advance/PHASE

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

Advance / PHASE is  software for first-principles calculation based on the density functional theory by using plane-wave basis and pseudopotentials. Since the electronic state is obtained based on quantum mechanics, highly accurate results can be obtained. It can be expected not only to analyze existing materials but also to design various metals, insulators, semiconductors, magnetic materials, dielectric materials, piezoelectric materials, and various other new materials.

To Detail

BerkeleyGW

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

BerkeleyGW is an open-source program package to calculate quasi-particle spectrum and optical responses from mean-field result by using GW approximation and Bethe-Salpeter equation. This is compatible with output files of many commonly used DFT codes such as Quantum ESPRESSO.

To Detail

CASTEP

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

Software for first-principles calculation based on pseudo-potential and plane-wave basis. This software performs electronic-state calculation of various systems by density functional theory, and can treat structure optimization, excited-state analysis, and so on. This software can be applied to many physical phenomena such as catalysis reaction, calculation of phase diagram, etc. There are many users of this payware in the world.

To Detail

CP2K

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source first-principles calculation library for pseudopotential and all-electron calculations. One of or a mixture of Gaussian and plane wave basis sets can be used. A lot of the development focuses on massively parallel calculations and linear scaling. The user can choose various calculation methods including density functional theory and Hartree-Fock.

To Detail

CPMD

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles molecular dynamics simulation based on pseudo-potential and plane-wave basis set. This application enables accurate molecular dynamics by density functional theory and Car-Parrinello method. It also supports structure optimization, Born-Oppenheimer molecular dynamics, path-integral molecular dynamics, calculation of response functions, the QM/MM method, and excited-state calculation.

To Detail

DMOL3

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for first-principles calculation based on density functional theory. This application is included in Material Sudio, and can evaluate electronic states and properties of various physical systems such as molecules, atomic clusters, crystals, and solid surfaces based on the all-electron method and the pseudopotential method. It can also be applied to evaluation of the chemical reaction such as catalysis and combustion reaction, and is optimized for large-scale parallel computing.

To Detail

exciting

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation based on all-electron calculations. In addition to ground-state energy and forces on atoms obtained by density functional theory, it focuses on investigation of excited state properties using time-dependent density functional theory as well as many-body perturbation theory. It is parallelized using MPI and is also optimized for multithreaded math libraries such as BLAS and LAPACK.

To Detail

JDFTx

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for first-principles calculation by the joint-DFT method based on a plane-wave basis. By implementation of the joint-DFT method, this application realizes a good convergence for electronic state calculation of molecules in liquid, particular for charged systems. This application is written by C++11, and supports GPU calculation by CUDA. This application also supports diffusive Monte Carlo simulation in cooperation with CASINO.

To Detail

MateriApps Installer

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of shell scripts for installing open-source applications and tools for computational materials science to macOS, Linux PC, cluster workstations, and major supercomputer systems in Japan. Major applications are preinstalled to the nation-wide joint-use supercomputer system at Institute for Solid State Physics, University of Tokyo by using MateriApps Installer.

To Detail

MateriApps LIVE!

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Debian Live Linux System that contains OS, editors, materials science application software, visualization tools, etc. An environment needed to perform materials science simulations is provided as a one package. By booting up on VirtualBox virtual machine, one can start simulations, such as the first-principles calculation, molecular dynamics, quantum chemical calculation, lattice model calculation, etc, immediately.

To Detail