An application for first-principles calculation based on the all-electron method. This application implements not only normal electronic state calculation (band calculation) but also a quasi-particle GW method for self-consistent (or one-shot) calculation of excitation spectrum and quasi-particle band. Combining with dynamical mean-field theory, self-consistent calculation including many-body effect can also be performed.
A sparse-modeling tool for computing the spectral function from the imaginary-time Green function. It removes statistical errors in quantum Monte Carlo data, and performs a stable analytical continuation. The obtained spectral function fulfills the non-negativity and the sum rule. The computation is fast and free from tuning parameters.
An open-source solver for the impurity problem based on the continuous-time quantum Monte Carlo method. Imaginary-time Green’s functions of the impurity Anderson model and the effective impurity model in the dynamical mean-field approximation can be calculated with high speed by using an efficient Monte Carlo algorithm. The main programs are written by C++, and can be called from Python scripts.
An interface tool for combining first-principles calculation based on density functional theory (DFT) and TRIQS, the application for dynamical mean-field theory (DMFT). By combining Wien2k and TRIQS, self-consistent DFT+DMFT calculation can be realized by this tool. One-shot DFT+DMFT calculation using band structures obtained by other first-principles applications is also possible.
w2dynamics is a hybridization-expansion continuous-time (CT-HYB) quantum Monte Carlo package, developed jointly in Wien and Würzburg. Users can calculate local two- and four-pointfermionic Green’s functions of multi-orbital impurity models. This application also provides DMFT Python code and an interface to wannier90 generated Hamiltonians.