ABINIT

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Open-source package for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs various electronic-state calculation by density functional theory such as band calculation of solids, and structure optimization of surfaces/interfaces. Detailed tutorials and documents are well prepared in this package, and many physical quantities including chemical reaction and lattice vibration can be obtained easily.

To Detail

Siesta

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and atom-localized basis sets. This application is capable of performing electronic structure calculations, structural relaxation, and molecular dynamics in a wide range of systems based on density functional theory. By adopting atom-localized basis sets, it realizes high-speed electronic calculation and linear-scaling in suitable computer systems. It can also perform electronic conductance calculations based on non-equilibrium Green’s function method.

To Detail

Parsec

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Parsec is a DFT program package based on real space basis and norm-conserving pseudopotential.

To Detail

ORCA

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application of semi-empirical/ab-initio quantum chemical calculation that comes under an academic license. It performs various quantum chemical calculations based on Hartree-Fock theory, density functional theory, and configuration interaction theory, yielding electronic states and enabling structure optimization and molecular spectrum analysis. Molecular dynamics calculation based on the QM/MM method is also possible by using this software in combination with GROMACS.

To Detail

CONQUEST

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

CONQUEST is a linear-scaling DFT (Density Functional Theory) code based on the density matrix minimization method. Since its computational cost, for both memory and computational costs, is only proportional to the number of atoms N of the target systems, the code can employ structure optimization or molecular dynamics on very large-scale systems, including more than hundreds of thousands of atoms. It also has high parallel efficiency and is suitable for massively parallel calculations.

To Detail

PHASE

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An electronic structure calculation program based on the density functional theory and the pseudo potential scheme with a plane wave basis set. This is a powerful tool to predict the physical properties of unknown materials and to simulate experimental results such as STM and EELS. This also enables users to perform long time molecular dynamics simulations and to analyze chemical reaction processes. This program is available on a wide variety of computers from single-core PCs to massive parallel computers like K computer. The whole source code is open to public.

To Detail

PIMD

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for molecular simulations. This application supports various methods such as classical and ab initio molecular dynamics, path integral simulations, replica exchange simulations, metadynamics, string method, surface hopping dynamics, QM/MM simulations, and so on. A hierarchical parallelization between molecular structures (replicas) and force fields (adiabatic potentials) enables fast and efficient computation.

To Detail

BigDFT

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on pseudopotential and wavelet basis. Electronic state calculation of massive systems is performed with high accuracy and high efficiency by using adaptive mesh. Parallel computing by MPI, OpenMP, and GPU is also supported.

To Detail

QUANTUM ESPRESSO

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Open-source program for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs electronic-state calculation with high accuracy based on density functional theory. In addition to basic-set programs, many core-packages and plugins are included. This package can be utilized for academic research and industrial development, and also supports parallel computing.

To Detail

CPMD

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles molecular dynamics simulation based on pseudo-potential and plane-wave basis set. This application enables accurate molecular dynamics by density functional theory and Car-Parrinello method. It also supports structure optimization, Born-Oppenheimer molecular dynamics, path-integral molecular dynamics, calculation of response functions, the QM/MM method, and excited-state calculation.

To Detail