Osaka2k

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and plane-wave basis sets. This application is capable of performing electronic structure calculations of a wide range of physical systems such as crystals and surfaces/interfaces. It supports structure relaxation, phonon-dispersion calculation, and molecular dynamics simulation, and can deal with systems with the spin-orbit interaction.

To Detail

STATE

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

STATE is a first-principles plane-wave pseudo-potential code. It provides electronic state calculations and molecular dynamics simulations. This code is suitable for simulating chemical reactions at solid surfaces and solid–liquid interfaces, i.e., It is able to investigate reaction paths and activation barriers of chemical processes at interfaces. It can also include Van der Waals corrections to conventional density functional theory.

To Detail

CPMD

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles molecular dynamics simulation based on pseudo-potential and plane-wave basis set. This application enables accurate molecular dynamics by density functional theory and Car-Parrinello method. It also supports structure optimization, Born-Oppenheimer molecular dynamics, path-integral molecular dynamics, calculation of response functions, the QM/MM method, and excited-state calculation.

To Detail

Q-Chem

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

An application for ab initio quantum chemical calculation. This application can calculate molecular structures, chemical reactivity, frequency analysis, electron spectrum, and NMR spectrum with high accuracy. It implements the density functional theory, the Hartree-Fock(HF) method as well as recently developed methods such as the post-HF correlation method. It also has GUI for molecular modeling and a tool for preparation of input files.

To Detail

MateriApps Installer

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of shell scripts for installing open-source applications and tools for computational materials science to macOS, Linux PC, cluster workstations, and major supercomputer systems in Japan. Major applications are preinstalled to the nation-wide joint-use supercomputer system at Institute for Solid State Physics, University of Tokyo by using MateriApps Installer.

To Detail

TurboRVB

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Ab initio quantum Monte Carlo solver for both molecular and bulk electronic systems. By using the geminal/Pfaffian wavefunction with the Jastrow correlator as the trial wavefunction, users can perform highly accurate variational calculations, structural optimizations and ab initio molecular dynamics for both classical and quantum nuclei.

To Detail

Qbox

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles molecular dynamics based on a pseudopotential method using plane bases. This application can perform electronic-state calculation and molecular dynamics employing the Car-Parrinello method. It implements MPI parallelization, which enables us to perform efficient parallel computing in various environments including large-scale parallel computers. The program is written in C++, and is distributed in source form under the GPL license.

To Detail

aenet (ænet, The Atomic Energy Network)

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

aenet is software for atomic interaction potentials using artificial neural networks. Users can construct neural network potentials using structures of target materials and their energies obtained from first principle calculations. The generated potentials can be used to molecular dynamics or Monte Carlo simulations.

To Detail

FMO in GAMESS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

The fragment molecular orbital (FMO) method can efficiently do quantum-mechanical calculations of large molecular systems by splitting the whole system into small fragments. The FMO program is distributed within quantum-chemical program suite GAMESS-US. FMO can provide various information regarding the structure and function of biopolymers, such as the interaction between a protein and a ligand.

To Detail

FPSEID21

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

First-principles software based on plane-wave basis and norm-conserving pseudopotential methods. Time-dependent DFT has been implemented. Users can perform real-time simulations for electron-ion dynamics under a time-dependent external field. Pseudopotentials with FPSEID21 format should be used, and those are downloadable from the website.

To Detail