BerkeleyGW

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

BerkeleyGW is an open-source program package to calculate quasi-particle spectrum and optical responses from mean-field result by using GW approximation and Bethe-Salpeter equation. This is compatible with output files of many commonly used DFT codes such as Quantum ESPRESSO.

To Detail

FDMNES

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for first-principles calculation based on density functional theory (DFT) optimized for X-ray spectroscopy analysis. Theoretical prediction and data fitting for X-ray spectroscopy such as XANES(X-ray absorption fine structure), XMCD(X-ray magnetic circular dichroism), RXD(resonant X-ray diffraction) can be preformes. This application employs a fully relativistic LSDA calculation based on the finite element method, and also supports the LDA+U method and the TD-DFT calculation.

To Detail

Octopus

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on pseudo- potential and real-space basis. It performs electronic-state calculation such as band calculation of solids and structure optimization for a variety of physical systems. The method of time-dependent density functional theory (TDDFT) is implemented, which allows simulation of dynamical phenomena with real-time evolution of electronic states, such as chemical reaction and electronic response to time-dependent external fields. Comes with detailed tutorials and comprehensive manuals.

To Detail

ONETEP

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for first-principles calculation based on the order-N method. This application can perform electronic-state calculation and band calculation for various physical systems. It supports the DFT+U method, the time-dependent DFT method, molecular dynamics, etc., and can also treat van der Waals forces and phonons. By using support applications, generation of input files, transformation between different file formats, and analysis of numerical results can be performed.

To Detail

MateriApps Installer

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of shell scripts for installing open-source applications and tools for computational materials science to macOS, Linux PC, cluster workstations, and major supercomputer systems in Japan. Major applications are preinstalled to the nation-wide joint-use supercomputer system at Institute for Solid State Physics, University of Tokyo by using MateriApps Installer.

To Detail

SALMON

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Photo-excited electron dynamics simulator based on time-dependent density functional theory using real-time, real-space grids. It can perform calculations of linear photo-response and nonlinear photo-response to pulse radiation in a variety of systems including isolated systems, periodic systems, interfaces/surfaces, etc. It can perform massively parallel calculations in systems consisting of thousands of atoms, and it can also perform multiscale simulation of electron-electromagnetic field-coupled dynamics.

To Detail

Parsec

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Parsec is a DFT program package based on real space basis and norm-conserving pseudopotential.

To Detail

RSDFT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RSDFT is an ab-initio program with the real-space difference method and a pseudo-potential method. Using density functional theory (DFT), this calculates electronic states in a vast range of physical systems: crystals, interfaces, molecules, etc. RSDFT is suitable for highly parallel computing because it does not need the fast Fourier transformation. By using the K-computer, this program can calculate the electronic states of around 100,000 atoms. The Gordon Bell Prize for Peak-Performance was awarded to RSDFT in 2011.

To Detail

Quloud-RSDFT

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

Provides a complete set of environments necessary for computational materials science research in the cloud. A web browser is all that is needed to start a full range of first-principles simulations, including modeling, calculation, data storage, and analysis. RSDFT is used as the engine, and the lineup will be expanded in the future. Data can be shared within a group, and structural data from other software such as GAUSSIAN and VASP can be read.

To Detail