ComDMFT is a massively parallel computational package to study the electronic structure of correlated-electron systems. Users can perform a parameter-free method based on ab initio linearized quasiparticle self-consistent GW (LQSGW) and dynamical mean field theory (DMFT).
An open-source application for the phase-field simulations. This application treats many kinds of problems in materials science such as determination of phase diagrams, crystal growing, small structures accompanied by first-order transition, and so on. Its source code is open under the GPL, and is developed putting emphasis on its flexibility in the C++ language.
Libxc is an library for exchange-correlation functions in the density functional theory. This has been developed for the purpose that well-tested exchange-correlation functions can be easily used in any DFT codes. In Libxc, users can find several types of exchange-correlation functions: LDA, GGA, hybrid-GGA, and meta-GGA.
A program package for electronic state calculations based on two-component relativistic quantum chemical theories. Several schemes and algorithms, which are specialized in calculations of molecules containing heavy elements, have been implemented. Single-point energies for ground and excited states, geometry optimizations, and molecular properties are available. Furthermore, the package can perform accurate calculations for molecules including many heavy atoms such as metal clusters with practical computational cost.
This software is for constructing inter-atomic force fields that mostly fit the results of ab-initio calculations, using multi-canonical molecular dynamic simulations. Various potential functions such as silicon, ionic crystal, and water have been pre-installed, and the user’s potential function can also be used. The default ab initio calculation solver is xTAPP and other calculation libraries are also applicable.
Fortran codes for computing the specified k-th eigenvalue and eigenvector for generalized symmetric definite eigenvalue problems. Sylvester’s law of inertia is employed as the fundamental principle in computations, and the sparse direct linear solver (MUMPS) is used in the main routine. By inputting Hamiltonian and its overlap matrices, user can compute electron’s energy and its wave function in the specified k-th energy level.
A MATLAB function for the contraction process of a tensor network. It takes as input a tensor network and a contraction sequence describing how to contract the network to a single tensor or number. It returns a single tensor or number as output. This function can be obtained by downloading the preprint source.
An open-source application for electronic structure calculation based on the diffusion Monte Carlo method. By using output of other packages of first-principles quantum-chemical calculation, this package performs electronic structure calculation with high accuracy. Although its computational cost is high, various physical quantities can be evaluated very accurately. It implements an efficient parallelization algorithm, and supports massively parallel computing.
COMmon Bayesian Optimization Library (COMBO) is an open source python library for machine learning techniques. COMBO is amenable to large scale problems, because the computational time grows only linearly as the number of candidates increases. Hyperparameters of a prediction model can be automatically learned from data by maximizing type-II likelihood.
QMAS is an ab-initio electronic-structure computational code package based on the projector augmented-wave (PAW) with a plane wave basis set. It computes electronic states and various physical properties efficiently with high precision for a wide range of physical systems. It provides geometry optimization, electronic states in a static magnetic field, permittivity distribution at the atomic-scale, energy and stress distribution, positron annihilation parameters, and so forth.