TRIQS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A library collection for numerical calculation of interacting quantum systems. Modern programming techniques are used in this library to implement common tasks for solving quantum impurity problems in dynamic mean-field theory in a simple and efficient way. It is written in C++ and Python, and includes tutorials using Jupyter Notebook.

To Detail

aenet (ænet, The Atomic Energy Network)

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

aenet is software for atomic interaction potentials using artificial neural networks. Users can construct neural network potentials using structures of target materials and their energies obtained from first principle calculations. The generated potentials can be used to molecular dynamics or Monte Carlo simulations.

To Detail

PHYSBO (optimization tools for PHYsics based on Bayesian Optimization )

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

PHYSBO is a Python library for researchers mainly in the materials science field to perform fast and scalable Bayesian optimization based on COMBO (Common Bayesian Optimization). Users can search the candidate with the largest objective function value from candidates listed in advance by using machine learning prediction. PHYSBO can handle a larger amount of data compared with standard implementations such as scikit-learn.

To Detail

2DMAT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

2DMAT is a framework for applying a search algorithm to a direct problem solver to find the optimal solution. In  version 1.0, for solving a direct problem, 2DMAT offers the wrapper of the solver for the total-reflection high-energy positron diffraction (TRHEPD) experiment. As algorithms, it offers the Nelder-Mead method, the grid search method, the Bayesian optimization method, and the replica exchange Monte Carlo method. Users can define original direct problem solvers or the search algorithms.

To Detail

QS3

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An exact diagonalization package for efficiently solving quantum spin 1/2 lattice models in almost fully spin-polarized sectors. QS3 can treat such systems with quite large system sizes, over 1000 sites. It supports calculations of wavenumber-dependence of energy-dispersion and dynamical spin structure factor.

To Detail

Uni10

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open source C++ library designed for the development of tensor network algorithms. The goal of this library is to provide basic tensor operations with an easy-to-use interface, and it also provides a Network class that handles the graphical representation of networks. A wrapper for calling it from Python is also provided.

To Detail

TeNPy

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A Python library for simulating strongly correlated quantum systems using tensor networks. The goal is to make the algorithms readable and easy to use for beginners, and also powerful and fast for experts. Simple sample code and toy code to illustrate TEBD and DMRG are also provided.

To Detail

TensorNetwork

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open source library for implementing tensor networks. It is developed based on TensorFlow and is designed to be easily used by experts in the field of machine learning as well as in the field of physics. In addition to TensorFlow, it includes wrappers for JAX, PyTorch, and Numpy.

To Detail

FPSEID21

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

First-principles software based on plane-wave basis and norm-conserving pseudopotential methods. Time-dependent DFT has been implemented. Users can perform real-time simulations for electron-ion dynamics under a time-dependent external field. Pseudopotentials with FPSEID21 format should be used, and those are downloadable from the website.

To Detail

peps-torch

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

peps-torch is a python library for calculation of quantum many-body problems on two dimensional lattices. Variational principles calculation is used with an infinite PEPS (iPEPS) as the trial wave function. Therefore, the ground state is obtained in the form of the element tensor of the iPEPS.  The energy of the trial state is estimated by the corner transfer matrix method (CTM), and its gradient with respect to the element tensor is computed through automatic differentiation provided by pytorch.  Functions/classes for exploiting the system’s symmetry are provided for reducing the computational cost if possible. While general models and lattices are not supported, many examples of stand-alone codes would make it relatively easy for users to write their own codes to suit their needs. pytorch is required.

To Detail