TITPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source program package for numerical diagonalization of quantum spin systems. The FORTRAN source programs are relatively simple and highly readable, and it can be applied to various quantum spin systems by modifying the main routine. Both the Lanczos and the inverse iteration methods are implemented for calculation of eigenvalues and eigenvectors, as well as correlation functions. Can be also used for diagonalization problems of general sparse matrices.

To Detail

AMULET

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

AMULET is a collection of tools for a first principles calculation of physical properties of strongly correlated materials. It is based on density functional theory (DFT) combined with dynamical mean-field theory (DMFT). Users can calculate physical properties of chemically disordered compounds and alloys within CPA+DMFT formalism.

To Detail

TurboGenius

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python wrapper to manage jobs for the ab initio Monte Carlo package TurboRVB. By combining with a workflow management application, TurboWorkflows,  users can perform high-throughput calculations based on TurboRVB.

To Detail

SPINPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A free software library for numerical diagonalization of quantum spin systems. Although the programs are based on TITPACK, they have been completely rewritten in C/C++ and several extensions have been added. It can handle, for example, the Heisenberg model, the Hubbard model, and the t-J model. This library supports dimension reduction of matrices exploiting symmetries, and it can run in parallel computing environments.

To Detail

LmtART

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for all-electron first-principles calculation based on augmented plane-wave basis. It performs electronic-state calculation such as band calculation of solids and structure optimization. The all-electron method, which treats core electrons explicitly, improves accuracy compared with pseudo-potential methods. This package can also treat strong electronic correlations by combining electronic-state calculation with the dynamical mean-field approximation.

To Detail

CONQUEST

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

CONQUEST is a linear-scaling DFT (Density Functional Theory) code based on the density matrix minimization method. Since its computational cost, for both memory and computational costs, is only proportional to the number of atoms N of the target systems, the code can employ structure optimization or molecular dynamics on very large-scale systems, including more than hundreds of thousands of atoms. It also has high parallel efficiency and is suitable for massively parallel calculations.

To Detail

QWalk

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for high-accuracy electronic-state calculation based on the variational Monte Carlo method and the diffusion Monte Carlo method. Although its computational cost is high, physical properties of atoms and small molecules in the ground states and excited states are calculated with very high accuracy. Includes an application program that generates input files from output of other packages for quantum chemical calculation, such as GAMESS, Gaussian, etc.

To Detail

RuNNer

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

FORTRAN-based software package developed by the Behler Group for implementing Behler-Parinello neural network potentials. Potentials can be constructed, evaluated, and used for molecular dynamics simulations using LAMMPS. The newest generation of neural network potentials that take into account long-range electrostatic interactions are implemented.

To Detail

Siesta

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and atom-localized basis sets. This application is capable of performing electronic structure calculations, structural relaxation, and molecular dynamics in a wide range of systems based on density functional theory. By adopting atom-localized basis sets, it realizes high-speed electronic calculation and linear-scaling in suitable computer systems. It can also perform electronic conductance calculations based on non-equilibrium Green’s function method.

To Detail

Q-Chem

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

An application for ab initio quantum chemical calculation. This application can calculate molecular structures, chemical reactivity, frequency analysis, electron spectrum, and NMR spectrum with high accuracy. It implements the density functional theory, the Hartree-Fock(HF) method as well as recently developed methods such as the post-HF correlation method. It also has GUI for molecular modeling and a tool for preparation of input files.

To Detail