NCON

  • Level of openness 2 ★★☆
  • Document quality 1 ★☆☆

A MATLAB function for the contraction process of a tensor network. It takes as input a tensor network and a contraction sequence describing how to contract the network to a single tensor or number. It returns a single tensor or number as output. This function can be obtained by downloading the preprint source.

To Detail

DDMRG

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

DDMRG (DynamicalDMRG) is a program for analyzing the dynamical properties of one-dimensional electron systems by using the density matrix renormalization group method. It simulates excited or photo-induced quantum phenomena in Mott insulators, spin-Peierls materials, organic materials, etc. Parallel computational procedures for linear and non-linear responses in low dimensional electron systems and analyzing routines for relaxation processes of excited states induced by photo-irradiation are available.

To Detail

snake-dmrg

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for simulation of low-dimensional interacting electron models based on density-matrix renormalization group (DMRG). For effective models of one-dimensional quantum systems and impurity systems, this application can treat not only physical quantities of ground states but also time evolution and finite-temperature physical quantities. The program is coded in C++, and can be called from MATLAB scripts.

To Detail

BLOCK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for quantum chemical calculation based on the density-matrix renormalization group (DMRG). For systems with a number of atomic orbitals, low-lying energy eigenvalues can be calculated in high accuracy of order of 1kcal/mol. This application is suitable especially to calculation of multi-orbital systems with one-dimensional topology such as chain-like or circular-like configuration of orbits.

To Detail

DMRG++

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for simulation based on the density-matrix renormalization group (DMRG). This application can perform high-speed calculation of low-dimensional quantum systems with high accuracy. It implements generic programming techniques in the C++ language, and can easily extend simulation to new models and geometries. It is developed putting emphasis on user-friendly interfaces and low dependences on environments.

To Detail

Uni10

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open source C++ library designed for the development of tensor network algorithms. The goal of this library is to provide basic tensor operations with an easy-to-use interface, and it also provides a Network class that handles the graphical representation of networks. A wrapper for calling it from Python is also provided.

To Detail

TeNPy

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A Python library for simulating strongly correlated quantum systems using tensor networks. The goal is to make the algorithms readable and easy to use for beginners, and also powerful and fast for experts. Simple sample code and toy code to illustrate TEBD and DMRG are also provided.

To Detail

TensorNetwork

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open source library for implementing tensor networks. It is developed based on TensorFlow and is designed to be easily used by experts in the field of machine learning as well as in the field of physics. In addition to TensorFlow, it includes wrappers for JAX, PyTorch, and Numpy.

To Detail

MateriApps Installer

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of shell scripts for installing open-source applications and tools for computational materials science to macOS, Linux PC, cluster workstations, and major supercomputer systems in Japan. Major applications are preinstalled to the nation-wide joint-use supercomputer system at Institute for Solid State Physics, University of Tokyo by using MateriApps Installer.

To Detail

ITensor

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A C++ library for implementing a tensor product wavefunction method to simulate many-body electron systems. This library provides a useful environment for simple definition of tensors in programs, and supports functions of linear algebras and quantum number conservation needed in a tensor network method. This library keeps excellent flexibility and efficiency in maintenance, and can easily make a solver of one-dimensional electron systems such as density-matrix renormalization group (DMRG).

To Detail