QCMaquis

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for obtaining optimized many-body wavefunctions expressed by matrix product states (MPS). By using a second-generation density matrix renormalization group (DMRG) algorithm, many-body wave functions can be efficiently optimized. The quantum-chemical operators are represented by matrix product operators (MPOs), which provides flexibility to accommodate various symmetries and relativistic effects.

To Detail

snake-dmrg

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for simulation of low-dimensional interacting electron models based on density-matrix renormalization group (DMRG). For effective models of one-dimensional quantum systems and impurity systems, this application can treat not only physical quantities of ground states but also time evolution and finite-temperature physical quantities. The program is coded in C++, and can be called from MATLAB scripts.

To Detail

TeNPy

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A Python library for simulating strongly correlated quantum systems using tensor networks. The goal is to make the algorithms readable and easy to use for beginners, and also powerful and fast for experts. Simple sample code and toy code to illustrate TEBD and DMRG are also provided.

To Detail

TensorNetwork

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open source library for implementing tensor networks. It is developed based on TensorFlow and is designed to be easily used by experts in the field of machine learning as well as in the field of physics. In addition to TensorFlow, it includes wrappers for JAX, PyTorch, and Numpy.

To Detail

Uni10

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open source C++ library designed for the development of tensor network algorithms. The goal of this library is to provide basic tensor operations with an easy-to-use interface, and it also provides a Network class that handles the graphical representation of networks. A wrapper for calling it from Python is also provided.

To Detail