Chainer

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source library for machine learning. Various functions on machine learning/deep learning are implemented in this package. Using flexible user-friendly description, various types of networks from simple to complex ones can be implemented. GPGPU parallel computation based on CUDA is also supported.

To Detail

Caffe

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source library for machine learning. Various functions on deep learning based on neural network can be used by this package. This package is especially customised for image identification, and a number of sample codes are prepared. Users can also use pre-trained models, which are open in Caffe Model Zoo. Since this package is written in C++, high-speed operation is realised.

To Detail

SIMPLE-NN

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.

To Detail

scikit-learn

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source library for data mining and data analysis. This package implements various methods of machine learning such as supervised learning (data classification, data regression, etc.), unsupervised learning (data clustering, etc.), and data pre-processing. This package is implemented on Python numerical libraries, NumPy and Scipy, and supports parallel computation.

To Detail

DeePMD-kit

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python/C++ based software package that employs deep learning techniques for construction of interatomic potentials. It implements the Deep Potential, which defines atomic environment descriptors with respect to a local reference frame. The output of many first-principles and molecular dynamics applications can be used as training data, and the trained potentials can be used for molecular dynamics calculations using LAMMPS and path integral molecular dynamics calculations using i-PI.

To Detail

Theano

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source numerical library for machine learning. Various functions related to deep learning are implemented. This package directly treats equations as such, and have useful routines such as matrix operation and auto partial derivative. Users can convert their codes into C language, and can compile it. High speed operation by GPGPU parallel calculation is supported. A number of tutorials are available.

To Detail

QUIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of software tools for molecular dynamics calculations. Various interatomic potentials and tight binding models are implemented, and numerous external applications can be invoked. It also supports training and evaluation of GAP (Gaussian Approximation Potential), which is a form of machine learning potential.

To Detail

Torch

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source numerical library for machine learning. Various functions related to deep learning based on neural networks are implemented. Users can implement complex network with flexible description, and can try various state-of-the-art methods. This package is used in a number of companies in the world. This package is written by the script language, lua.

To Detail

NequIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open source software for building and using machine learning potentials based on E(3)-equivariant graph neural networks, which can be trained on output files of simulation codes that can be read by ASE. Molecular dynamics calculations with LAMMPS can be performed using the trained potentials.

To Detail

PyTorch

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An interface package to use Torch (the open-source numerical library for machine learning) from Python. Users can easily implement deep learning based on neural networks, and can use various state-of-the-art methods. This package supports GPGPU parallel computation, and realises high-speed operation. A front-end interface for C++ is also prepared.

To Detail