A results database of first-principle calculation for material science. This database provides numerical data of crystal structures, band structures, thermodynamic quantities, phase diagrams, magnetic moments, and so on. This site is maintained by a research group of Duke University, and in particular, has extensive data of Heusler alloys. In addition to a user interface based on web browsers, an http-based API is also provided to enable user-defined material screening. This database can be used without charge after registration.
An application for modeling and visualization of molecules for quantum chemical calculation. This application implements a construction of
molecular structures with classical molecular dynamics simulation and structure optimization by simple generic force fields, and a preparation of input files for applications of quantum chemical calculation such as Gaussian. A binary package for Windows XP is available, and informal packages for Windows 7, iPad, and Linux exist.
Advance / PHASE is software for first-principles calculation based on the density functional theory by using plane-wave basis and pseudopotentials. Since the electronic state is obtained based on quantum mechanics, highly accurate results can be obtained. It can be expected not only to analyze existing materials but also to design various metals, insulators, semiconductors, magnetic materials, dielectric materials, piezoelectric materials, and various other new materials.
An application for calculating thermal transport properties based on the phonon Boltzman equation. This application has its own database for phonon properties of materials, and can utilize it for evaluating heat conductivity and specific heat of crystals, alloys, and heterostructures combining them. Phonon-energy resolved contribution to heat conductivity and specific heat can also be calculated. This application also supports calculation of time-dependent response and steady state analysis.
Software framework for training a machine learning model to reproduce first-principles energies and then using the model to perform configurational sampling in disordered systems. It has been developed with an emphasis on multi-component solid-state systems such as metal and oxide alloys. At present, Quantum Espresso, VASP and OpenMX can be used as first-principles energy calculators, and aenet can be used to construct neural network potentials.
Open-source software for building computational physics applications. Common C++ auxiliary modules required for various methods in computational physics such as the quantum Monte Carlo method are prepared. This software helps to build reusable codes and to reduce development time for complex computational science applications. It also supports parallel programming based on MPI or OpenMP.
A set of tools for alloy theory analysis in combination with first-principles calculation packages. Free energy and thermodynamic phase diagrams of alloy systems are calculated by combining the cluster expansion method with Monte Carlo simulations. Interfaces with major first-principles code including Quantum Espresso, VASP, and ABINIT are provided.
An open-source impurity solver based on the quantum Monte Carlo method. Thermal equilibrium states of interacting impurity systems, such as the impurity Anderson model, can be evaluated by the continuous-time hybridization-expansion quantum Monte Carlo method. It can be used as a solver of effective impurity models derived from the dynamical mean-field theory (DMFT) and can deal with multi-orbital models. This package supports parallel computation by MPI and is developed based on the ALPSCore library.
aenet is software for atomic interaction potentials using artificial neural networks. Users can construct neural network potentials using structures of target materials and their energies obtained from first principle calculations. The generated potentials can be used to molecular dynamics or Monte Carlo simulations.