SMASH

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Open source software for massively parallel quantum chemistry calculations. Energies and geometries of nano-sized molecules can be calculated without fragmentation. The program supports Hartree-Fock, density functional theory, and second-order Møller-Plesset perturbation theory calculations. The input format, execution method, and program structure are simple, and frequently used routines can be easily extracted.

To Detail

snake-dmrg

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for simulation of low-dimensional interacting electron models based on density-matrix renormalization group (DMRG). For effective models of one-dimensional quantum systems and impurity systems, this application can treat not only physical quantities of ground states but also time evolution and finite-temperature physical quantities. The program is coded in C++, and can be called from MATLAB scripts.

To Detail

SpM

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

A sparse-modeling tool for computing the spectral function from the imaginary-time Green function. It removes statistical errors in quantum Monte Carlo data, and performs a stable analytical continuation. The obtained spectral function fulfills the non-negativity and the sum rule. The computation is fast and free from tuning parameters.

To Detail

STATE

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

STATE is a first-principles plane-wave pseudo-potential code. It provides electronic state calculations and molecular dynamics simulations. This code is suitable for simulating chemical reactions at solid surfaces and solid–liquid interfaces, i.e., It is able to investigate reaction paths and activation barriers of chemical processes at interfaces. It can also include Van der Waals corrections to conventional density functional theory.

To Detail

Spglib

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A library related to the symmetry of crystal structures. By providing a crystal structure, Spglib can detect information related to the symmetry of the structure, such as symmetry operations, a space group and a primitive cell. It can also generate irreducible wave numbers. Spglib is written in C, but various interfaces are available, including Python, Fortran, and Rust.

To Detail

SIMPLE-NN

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.

To Detail

SHRY

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A python tool for generating symmetry-inequivalent supercell structures from a CIF file containing site occupancy information. SHRY can be used as a command-line tool as well as a module in a python script.

To Detail

Strawberry Fields

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python library for the design, simulation, and optimization of continuous-variable quantum optical circuits. It has high-level functions for solving problems including graph and network optimization, machine learning, and chemistry, and can perform training and optimization of quantum programs using the TensorFlow backend.

To Detail

Starrydata

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Starrydata is an open database of experimental data from figures in published papers. Thermoelectric properties such as Seebeck coefficient, electrical resistivity and thermal conductivity are presented mainly on thermoelectric materials.

To Detail

Superconducting Toolkit (sctk)

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for evaluating superconducting gaps from resutls of the first-principles calculation by Quantum ESPRESSO. By calculating electron-phonon interaction and screened Coulomb interaction from the first-principles calculation, superconducting gaps can be obtained from the gap equation. Quasiparticle densities of states and ultrasonic attenuation rates can also be calculated.

To Detail