TensorFlow

  • Level of openness 2 ★★☆
  • Document quality 3 ★★★

A numerical library for machine learning. Various functions on machine learning (including supervised learning and unsupervised learning) are implemented in this package. Complex network can be expressed in a simple form by using data flow graphs. Efficient CPU/GPGPU parallel computation is supported to realise efficient operation on large scale data.

To Detail

Theano

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source numerical library for machine learning. Various functions related to deep learning are implemented. This package directly treats equations as such, and have useful routines such as matrix operation and auto partial derivative. Users can convert their codes into C language, and can compile it. High speed operation by GPGPU parallel calculation is supported. A number of tutorials are available.

To Detail

Torch

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source numerical library for machine learning. Various functions related to deep learning based on neural networks are implemented. Users can implement complex network with flexible description, and can try various state-of-the-art methods. This package is used in a number of companies in the world. This package is written by the script language, lua.

To Detail

Thermo-Calc

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for evaluating thermodynamic quantities and phase diagrams of alloys and compounds. This application can calculate thermal-equilibrium phase diagrams and thermodynamic quantities of alloys and compounds in combination with databases, and can be utilized for evaluation and prediction of physical properties in materials science and metallurgy. It supports various models of thermodynamics, and also includes useful tools for plotting phase diagrams.

To Detail

TurboGenius

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python wrapper to manage jobs for the ab initio Monte Carlo package TurboRVB. By combining with a workflow management application, TurboWorkflows,  users can perform high-throughput calculations based on TurboRVB.

To Detail

TAPIOCA

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A tool of input-file preparation and visualization for xTAPP, an application of the first-principle calculation. By graphical user interface (GUI), this application helps xTAPP users for making input files, and visualizes results of wavefunctions, electron densities, and potential profiles into three-dimensional graphics from output files.

To Detail

Tecplot

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for visualization of computational fluid dynamics and general numerical simulation. This application provides an integrated environment for two- and three- dimensional graph drawing, and supports interactive visualization of data with many options such as slices, contours, and stream traces. It also supports visualization of large-scale data and efficient comparison between many data sets.

To Detail

TeNeS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A solver program for two dimensional quantum lattice model based on a projected entangled pair state wavefunction and the corner transfer matrix renormalization group method.
This works on a massively parallel machine because tensor operations are OpenMP/MPI parallelized.

To Detail

TurboRVB

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Ab initio quantum Monte Carlo solver for both molecular and bulk electronic systems. By using the geminal/Pfaffian wavefunction with the Jastrow correlator as the trial wavefunction, users can perform highly accurate variational calculations, structural optimizations and ab initio molecular dynamics for both classical and quantum nuclei.

To Detail

TITPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source program package for numerical diagonalization of quantum spin systems. The FORTRAN source programs are relatively simple and highly readable, and it can be applied to various quantum spin systems by modifying the main routine. Both the Lanczos and the inverse iteration methods are implemented for calculation of eigenvalues and eigenvectors, as well as correlation functions. Can be also used for diagonalization problems of general sparse matrices.

To Detail