Theano

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source numerical library for machine learning. Various functions related to deep learning are implemented. This package directly treats equations as such, and have useful routines such as matrix operation and auto partial derivative. Users can convert their codes into C language, and can compile it. High speed operation by GPGPU parallel calculation is supported. A number of tutorials are available.

To Detail

TurboGenius

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python wrapper to manage jobs for the ab initio Monte Carlo package TurboRVB. By combining with a workflow management application, TurboWorkflows,  users can perform high-throughput calculations based on TurboRVB.

To Detail

TC++

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

TC++ is open-source software for ab initio calculations using the transcorrelated (TC) method. In TC++, users can take account of electron correlations in a Jastrow correlation factor based on the TC method. Electronic structures obtained by Quantum ESPRESSO can be used as an initial state of TC++.

To Detail

TB2J

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A python package for automatic calculation of magnetic effective interactions between atoms (exchange and Dzyaloshinskii-Moriya interactions) from ab initio Hamiltonians based on Wannier functions and LCAO calculations. The package can postprocess Hamiltonians calculated using Wannier90, Siesta, and OpenMX. Input files for magnetic structure simulators such as Vampire can also be generated.

To Detail

TensorNetwork

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open source library for implementing tensor networks. It is developed based on TensorFlow and is designed to be easily used by experts in the field of machine learning as well as in the field of physics. In addition to TensorFlow, it includes wrappers for JAX, PyTorch, and Numpy.

To Detail

TeNPy

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A Python library for simulating strongly correlated quantum systems using tensor networks. The goal is to make the algorithms readable and easy to use for beginners, and also powerful and fast for experts. Simple sample code and toy code to illustrate TEBD and DMRG are also provided.

To Detail

2DMAT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

2DMAT is a framework for applying a search algorithm to a direct problem solver to find the optimal solution. In  version 1.0, for solving a direct problem, 2DMAT offers the wrapper of the solver for the total-reflection high-energy positron diffraction (TRHEPD) experiment. As algorithms, it offers the Nelder-Mead method, the grid search method, the Bayesian optimization method, and the replica exchange Monte Carlo method. Users can define original direct problem solvers or the search algorithms.

To Detail

TRIQS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A library collection for numerical calculation of interacting quantum systems. Modern programming techniques are used in this library to implement common tasks for solving quantum impurity problems in dynamic mean-field theory in a simple and efficient way. It is written in C++ and Python, and includes tutorials using Jupyter Notebook.

To Detail

TurboRVB

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Ab initio quantum Monte Carlo solver for both molecular and bulk electronic systems. By using the geminal/Pfaffian wavefunction with the Jastrow correlator as the trial wavefunction, users can perform highly accurate variational calculations, structural optimizations and ab initio molecular dynamics for both classical and quantum nuclei.

To Detail

TeNeS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A solver program for two dimensional quantum lattice model based on a projected entangled pair state wavefunction and the corner transfer matrix renormalization group method.
This works on a massively parallel machine because tensor operations are OpenMP/MPI parallelized.

To Detail