SMASH

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Open source software for massively parallel quantum chemistry calculations. Energies and geometries of nano-sized molecules can be calculated without fragmentation. The program supports Hartree-Fock, density functional theory, and second-order Møller-Plesset perturbation theory calculations. The input format, execution method, and program structure are simple, and frequently used routines can be easily extracted.

To Detail

snake-dmrg

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for simulation of low-dimensional interacting electron models based on density-matrix renormalization group (DMRG). For effective models of one-dimensional quantum systems and impurity systems, this application can treat not only physical quantities of ground states but also time evolution and finite-temperature physical quantities. The program is coded in C++, and can be called from MATLAB scripts.

To Detail

SpM

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

A sparse-modeling tool for computing the spectral function from the imaginary-time Green function. It removes statistical errors in quantum Monte Carlo data, and performs a stable analytical continuation. The obtained spectral function fulfills the non-negativity and the sum rule. The computation is fast and free from tuning parameters.

To Detail

SALMON

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Photo-excited electron dynamics simulator based on time-dependent density functional theory using real-time, real-space grids. It can perform calculations of linear photo-response and nonlinear photo-response to pulse radiation in a variety of systems including isolated systems, periodic systems, interfaces/surfaces, etc. It can perform massively parallel calculations in systems consisting of thousands of atoms, and it can also perform multiscale simulation of electron-electromagnetic field-coupled dynamics.

To Detail

Starrydata

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Starrydata is an open database of experimental data from figures in published papers. Thermoelectric properties such as Seebeck coefficient, electrical resistivity and thermal conductivity are presented mainly on thermoelectric materials.

To Detail

Siesta

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and atom-localized basis sets. This application is capable of performing electronic structure calculations, structural relaxation, and molecular dynamics in a wide range of systems based on density functional theory. By adopting atom-localized basis sets, it realizes high-speed electronic calculation and linear-scaling in suitable computer systems. It can also perform electronic conductance calculations based on non-equilibrium Green’s function method.

To Detail

Strawberry Fields

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python library for the design, simulation, and optimization of continuous-variable quantum optical circuits. It has high-level functions for solving problems including graph and network optimization, machine learning, and chemistry, and can perform training and optimization of quantum programs using the TensorFlow backend.

To Detail

SHRY

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A python tool for generating symmetry-inequivalent supercell structures from a CIF file containing site occupancy information. SHRY can be used as a command-line tool as well as a module in a python script.

To Detail

Spin Glass Server

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Server for computing exact ground state of Ising model with random interacitons (Ising spin glasses). Users can specify the distributions of the interactions and the geometry of lattices. By inputting the informaiont of the model, users will receive the computational results by e-mail from the server.

To Detail

SPINPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A free software library for numerical diagonalization of quantum spin systems. Although the programs are based on TITPACK, they have been completely rewritten in C/C++ and several extensions have been added. It can handle, for example, the Heisenberg model, the Hubbard model, and the t-J model. This library supports dimension reduction of matrices exploiting symmetries, and it can run in parallel computing environments.

To Detail