CLUPAN

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Program libraries for alloy modeling analysis using a cluster expansion method. Energy of alloy systems evaluated by other electronic state calculation libraries is used as an input, and atomic configuration effects are evaluated with the accuracy of a first principles calculation. Ground state structures, evaluation of thermodynamic quantities, equilibrium diagrams, disordering by temperature, etc. can be calculated with high accuracy.

To Detail

Caffe

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source library for machine learning. Various functions on deep learning based on neural network can be used by this package. This package is especially customised for image identification, and a number of sample codes are prepared. Users can also use pre-trained models, which are open in Caffe Model Zoo. Since this package is written in C++, high-speed operation is realised.

To Detail

CP2K

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source first-principles calculation library for pseudopotential and all-electron calculations. One of or a mixture of Gaussian and plane wave basis sets can be used. A lot of the development focuses on massively parallel calculations and linear scaling. The user can choose various calculation methods including density functional theory and Hartree-Fock.

To Detail

CRYSTAL

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

A first-principles simulation program based on the pseudopotential method utilizing Gaussian basis sets. It can perform simulations based on Hartree-Fock and density functional theories. It can be run under Unix/Linux, and also provides a simple GUI for Windows. Binaries are distributed for a fee, but users can first try the evaluation copy.

To Detail

CTM4XAS

  • Level of openness 2 ★★☆
  • Document quality 3 ★★★

An application for X-ray spectroscopy analysis based on atomic multiple-state calculation. This application performs multiplet calculation for transition-metal and rare-earth elements by taking into account effect of crystal fields and charge transfer, and can determine physical parameters by comparison between theory and experimental data via fitting. It implements useful graphical user interface(GUI), realizing intuitive operation.

To Detail

CASTEP

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

Software for first-principles calculation based on pseudo-potential and plane-wave basis. This software performs electronic-state calculation of various systems by density functional theory, and can treat structure optimization, excited-state analysis, and so on. This software can be applied to many physical phenomena such as catalysis reaction, calculation of phase diagram, etc. There are many users of this payware in the world.

To Detail

Chainer

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source library for machine learning. Various functions on machine learning/deep learning are implemented in this package. Using flexible user-friendly description, various types of networks from simple to complex ones can be implemented. GPGPU parallel computation based on CUDA is also supported.

To Detail

C-Tools

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

This application can produce input files of various applications for density functional theory (DFT) calculations via user-friendly parameter adjustment using three-dimensional computer graphics (3DCG) and graphical user interfaces (GUI). Input-file conversion between different applications is also possible.

To Detail

CPMD

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles molecular dynamics simulation based on pseudo-potential and plane-wave basis set. This application enables accurate molecular dynamics by density functional theory and Car-Parrinello method. It also supports structure optimization, Born-Oppenheimer molecular dynamics, path-integral molecular dynamics, calculation of response functions, the QM/MM method, and excited-state calculation.

To Detail

Calypso

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for prediction of stable and metastable structures from a chemical composition. This application applies particle swarm optimization to predict material structures from results of the first-principles calculation by external packages (VASP, CASTEP, Quantum Espresso, GULP, SIESTA, CP2k). It has been applied to predict not only three-dimensional crystal structures, but also those of clusters and surfaces.

To Detail