TOMBO

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A first principles calculation program using all electron mixture based approach. It targets broad physical systems such as isolated systems, surfaces and interfaces, and crystals, and it calculates all electronic states from core electrons to valence electrons. It deals with calculation methods such as the GW method, and also deals with parallel calculations. It can execute with high accuracy molecular dynamics calculations for electronic excited states based on time dependent density functional theory.

To Detail

GENESIS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for molecular dynamics simulation of biomolecules. This application is optimized for massive parallel computing environments such as the K-computer, and can perform high-speed molecular dynamical simulation of proteins and biomolecules. This application supports both all atoms calculation and coarse-grained model calculation, and can treat extended ensemble such as a replica exchange method. This code is released under GPL license.

To Detail

QMCSGF

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open source application implementing path-integral Monte Carlo method based on Stochastic Green function method. Finite temperature calculation of extended Bose Hubbard model and Heisenberg model with finite field can be treated. JSON and YAML formats are adopted for data I/O.

To Detail

Chainer

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source library for machine learning. Various functions on machine learning/deep learning are implemented in this package. Using flexible user-friendly description, various types of networks from simple to complex ones can be implemented. GPGPU parallel computation based on CUDA is also supported.

To Detail

2DMAT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

2DMAT is a framework for applying a search algorithm to a direct problem solver to find the optimal solution. In  version 1.0, for solving a direct problem, 2DMAT offers the wrapper of the solver for the total-reflection high-energy positron diffraction (TRHEPD) experiment. As algorithms, it offers the Nelder-Mead method, the grid search method, the Bayesian optimization method, and the replica exchange Monte Carlo method. Users can define original direct problem solvers or the search algorithms.

To Detail

SIMPLE-NN

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.

To Detail

FDMNES

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for first-principles calculation based on density functional theory (DFT) optimized for X-ray spectroscopy analysis. Theoretical prediction and data fitting for X-ray spectroscopy such as XANES(X-ray absorption fine structure), XMCD(X-ray magnetic circular dichroism), RXD(resonant X-ray diffraction) can be preformes. This application employs a fully relativistic LSDA calculation based on the finite element method, and also supports the LDA+U method and the TD-DFT calculation.

To Detail

Avogadro

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application of molecular modeling/editing for quantum chemical calculation. This application supports graphical user interface (GUI) for input-file preparation for software of quantum chemical calculation such as GAMESS, Gaussian, etc., and displays their results by reading output files. It can also make movies in the formats of vector graphics, POV-Ray, and so on.

To Detail

exciting

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation based on all-electron calculations. In addition to ground-state energy and forces on atoms obtained by density functional theory, it focuses on investigation of excited state properties using time-dependent density functional theory as well as many-body perturbation theory. It is parallelized using MPI and is also optimized for multithreaded math libraries such as BLAS and LAPACK.

To Detail

MMSP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of C++ interfaces for simulation of mesoscale properties based on grid data. By using provided header files, one can easily construct programs for simulation of various phenomena such as solidification, crystal growth, and spinodal decomposition, based on a Monte Carlo method, cellar automaton, and a phase-field method. This interface supports parallel computing by MPI, and also provides converters of output files for visualization software such as ParaView.

To Detail