DISCUS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open source application to simulate crystal structures and to calculate and refine against diffraction pattern and the pair distribution function. A special emphasis placed is on the simulation of materials with disorder and the package provides many tools to create and distribute defects throughout the crystal. Another strong feature is the simulation of nanoparticles.

To Detail

CRYSTAL

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

A first-principles simulation program based on the pseudopotential method utilizing Gaussian basis sets. It can perform simulations based on Hartree-Fock and density functional theories. It can be run under Unix/Linux, and also provides a simple GUI for Windows. Binaries are distributed for a fee, but users can first try the evaluation copy.

To Detail

TensorFlow

  • Level of openness 2 ★★☆
  • Document quality 3 ★★★

A numerical library for machine learning. Various functions on machine learning (including supervised learning and unsupervised learning) are implemented in this package. Complex network can be expressed in a simple form by using data flow graphs. Efficient CPU/GPGPU parallel computation is supported to realise efficient operation on large scale data.

To Detail

LAMMPS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A general-purpose open-source application for classical molecular dynamics simulation, distributed under the GPL license. This package can perform molecular dynamics calculation of various systems such as soft matters, solids, and mesoscopic systems. It can be used as a simulator of classical dynamics of realistic atoms as well as general model particles. It supports parallel computing through spatial divisions. Its codes are designed so that their modification and extension are easy.

To Detail

Questaal

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for first-principles calculation based on the all-electron method. This application implements not only normal electronic state calculation (band calculation) but also a quasi-particle GW method for self-consistent (or one-shot) calculation of excitation spectrum and quasi-particle band. Combining with dynamical mean-field theory, self-consistent calculation including many-body effect can also be performed.

To Detail

BigDFT

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on pseudopotential and wavelet basis. Electronic state calculation of massive systems is performed with high accuracy and high efficiency by using adaptive mesh. Parallel computing by MPI, OpenMP, and GPU is also supported.

To Detail

HORTON

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for quantum chemical calculation. This application can perform quantum chemical calculation based on the Hartree-Fock method and the density functional method. The code is developed on the emphasis of readability and flexibility, and can be called from Python scripts. Quantum chemical calculation based on two-electron wave functions (geminals) is also possible.

To Detail

mumax3

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for micromagnetic simulation optimized for general-purpose computing on GPU. This application can calculate spatial distribution of magnetization with speed of more than 100 times compared with CPU calculation. This application can also treat the RKKY interaction, effect of spin injection, and Voronoi diagrams. It supports remote computing using its web-GUI system.

To Detail

Exabyte.io

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

Exabyte.io is a cloud-based nano-scale material modeling platform that accelerates research and development of new materials. Material science softwares such as Quantum ESPRESSO have been implemented on this platform, which can be used through web-page or via secure shell terminal.

To Detail

BoltzTraP2

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for calculating transport coefficients based on the Boltzman equation. Within the relaxation time approximation, transport coefficients such as the Hall coefficient and the Seebeck coefficient can be evaluated from the output of the first principles calculation applications (Wien2k, ABINIT, SIESTA, quantum ESPRESSO, VASP). If users can measure relaxation time experimentally, electric conductivity can also be evaluated.

To Detail