COMmon Bayesian Optimization Library (COMBO)

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

COMmon Bayesian Optimization Library (COMBO) is an open source python library for machine learning techniques. COMBO is amenable to large scale problems, because the computational time grows only linearly as the number of candidates increases. Hyperparameters of a prediction model can be automatically learned from data by maximizing type-II likelihood.

To Detail

Chainer

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source library for machine learning. Various functions on machine learning/deep learning are implemented in this package. Using flexible user-friendly description, various types of networks from simple to complex ones can be implemented. GPGPU parallel computation based on CUDA is also supported.

To Detail

CLUPAN

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Program libraries for alloy modeling analysis using a cluster expansion method. Energy of alloy systems evaluated by other electronic state calculation libraries is used as an input, and atomic configuration effects are evaluated with the accuracy of a first principles calculation. Ground state structures, evaluation of thermodynamic quantities, equilibrium diagrams, disordering by temperature, etc. can be calculated with high accuracy.

To Detail

Caffe

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source library for machine learning. Various functions on deep learning based on neural network can be used by this package. This package is especially customised for image identification, and a number of sample codes are prepared. Users can also use pre-trained models, which are open in Caffe Model Zoo. Since this package is written in C++, high-speed operation is realised.

To Detail