MOPAC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for semi-empirical quantum chemical calculation based on NDDO (neglect of diatomic differential overlap) approximation. This program calculates, for a given molecule or a crystal, molecular orbits and atomic forces, as well as vibration spectra, thermal quantities (heat of formation etc.), isotopic exchange effect, force constant, and so on. It can also treat radicals and ions.

To Detail

Missing

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for atomic multiplet calculation used in X-ray spectroscopies. This application consists of several calculation modules and graphical user interface, and can perform multiplet calculation of atoms. It can take into account effect of crystal fields and charge transfer, both of which are important in transition-metal compounds, and can provide useful information to interpret experimental results obtained in various inner-shell electron X-ray spectroscopies.

To Detail

MODYLAS

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

MODYLAS is a highly parallelized general-purpose molecular dynamics (MD) simulation program appropriate for very large physical, chemical, and biological systems. It is equipped most standard MD techniques including free energy calculations based on thermodynamic integration method. Long-range forces are evaluated rigorously by the fast multipole method (FMM) without using the fast Fourier transform (FFT) in order to realize excellent scalability. The program enables investigations of large-scale real systems such as viruses, liposomes, assemblies of proteins and micelles, and polymers. It works on ordinary linux machines, too.

To Detail

MolDS

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An application for semi-empirical quantum chemistry calculation. Special emphasis is placed on molecular dynamics simulations, and is able to run efficiently on large-scale cluster computer systems using OpenMP/MPI hybrid parallelism. The code is still under development, but the source code is distributed freely under the GPL license.

To Detail

M2TD

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

This software is for constructing inter-atomic force fields that mostly fit the results of ab-initio calculations, using multi-canonical molecular dynamic simulations. Various potential functions such as silicon, ionic crystal, and water have been pre-installed, and the user’s potential function can also be used. The default ab initio calculation solver is xTAPP and other calculation libraries are also applicable.

To Detail

Materials Project

A results database of first-principle calculation for material science. This database provides numerical data of crystal structures, band structures, thermodynamic quantities, phase diagrams, magnetic moments, and so on. This site is maintained by a research group of MIT, and has extensive data of materials related to lithium battery. In addition to a user interface based on web browsers, an http-based API is also provided to enable user-defined material screening. This database can be used without charge after registration.

To Detail

MatNavi

A database of structures and properties for various materials including polymers and inorganic substances. This database is maintained by National Institute of Materials Science (NIMS), and provides crystal structures, various physical properties, and phase diagrams for material science via a user interface based on web browsers. This database also provides calculation results of phase diagrams and electronic structures. This database can be used without charge after registration.

To Detail