QS3

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An exact diagonalization package for efficiently solving quantum spin 1/2 lattice models in almost fully spin-polarized sectors. QS3 can treat such systems with quite large system sizes, over 1000 sites. It supports calculations of wavenumber-dependence of energy-dispersion and dynamical spin structure factor.

To Detail

QuTiP

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for dynamical simulation of open quantum systems. It supports a wide range of Hamiltonians such as quantum optics, ion traps, and superconducting circuits. The time evolution of quantum states is evaluated by a master equation. These calculation library can be called from Python via a user-friendly interface.

To Detail

Qulacs

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

C ++ / Python library for simulation of quantum computer. Users can perform simulations of quantum circuits constructed from variational quantum circuits and noisy quantum gates for the development of NISQ devices. It also supports OpenMP and GPU parallelization.

To Detail

QuSpin

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

QuSpin is a python package for performing exact diagonalization and real- or imaginary-time evolution for quantum many-body systems. Using QuSpin, for example, it is possible to study the many-body localization and the quantum quenches in the Heisenberg chain. Moreover, QuSpin specifies the symmetries in the systems such as the total magnetization, the parity, the spin inversion, the translation symmetry, and their combinations.

To Detail

QMCPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

QMCPACK is a modern high-performance open-source Quantum Monte Carlo (QMC) simulation code. Its main applications are electronic structure calculations of molecular, quasi-2D and solid-state systems. Variational Monte Carlo (VMC), diffusion Monte Carlo (DMC), orbital space auxiliary field QMC (AFQMC) and a number of other advanced QMC algorithms are implemented.

To Detail

QuCumber

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

QuCumber is an open-source Python package that implements neural-network quantum state reconstruction of many-body wavefunctions from measurement data such as magnetic spin projections, orbital occupation number. Given a training dataset of measurements, QuCumber discovers the most likely quantum state compatible with the measurements by finding the optimal set of parameters of a restricted Boltzmann machine (RBM).

.

To Detail

QCMaquis

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for obtaining optimized many-body wavefunctions expressed by matrix product states (MPS). By using a second-generation density matrix renormalization group (DMRG) algorithm, many-body wave functions can be efficiently optimized. The quantum-chemical operators are represented by matrix product operators (MPOs), which provides flexibility to accommodate various symmetries and relativistic effects.

To Detail

Quantum Unfolding

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Code for unfolding first-principles electronic energy bands calculated using supercells into the corresponding primary-cell Brillouin zone. It uses maximally-localized Wannier functions calculated using Wannier90.

To Detail

QUANTUM ESPRESSO

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Open-source program for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs electronic-state calculation with high accuracy based on density functional theory. In addition to basic-set programs, many core-packages and plugins are included. This package can be utilized for academic research and industrial development, and also supports parallel computing.

To Detail

QWalk

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for high-accuracy electronic-state calculation based on the variational Monte Carlo method and the diffusion Monte Carlo method. Although its computational cost is high, physical properties of atoms and small molecules in the ground states and excited states are calculated with very high accuracy. Includes an application program that generates input files from output of other packages for quantum chemical calculation, such as GAMESS, Gaussian, etc.

To Detail