DMRG++

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for simulation based on the density-matrix renormalization group (DMRG). This application can perform high-speed calculation of low-dimensional quantum systems with high accuracy. It implements generic programming techniques in the C++ language, and can easily extend simulation to new models and geometries. It is developed putting emphasis on user-friendly interfaces and low dependences on environments.

To Detail

DSQSS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

DSQSS is an application program for solving quantum many body problems in a discrete set (typically a lattice). It carries out quantum Monte Carlo simulations that sample from the Feynman path integral using the worm update. It can handle any lattice geometry and interaction.

To Detail

DC-DFTB-MD

  • Level of openness 2 ★★☆
  • Document quality 0 ☆☆☆

An application for DFTB (Density Functional Tight Binding) calculation combined with Divide-and-Conquer (DC) method. The DC-DFTB-K program enables geometry optimization and molecular dynamics simulation of large molecular systems with linear-scaling computational cost. DFTB electronic structure calculation of 1 million atom system has been demonstrated using MPI/OpenMP hybrid parallel computation on the K computer.

To Detail

DDMRG

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

DDMRG (DynamicalDMRG) is a program for analyzing the dynamical properties of one-dimensional electron systems by using the density matrix renormalization group method. It simulates excited or photo-induced quantum phenomena in Mott insulators, spin-Peierls materials, organic materials, etc. Parallel computational procedures for linear and non-linear responses in low dimensional electron systems and analyzing routines for relaxation processes of excited states induced by photo-irradiation are available.

To Detail

DMOL3

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for first-principles calculation based on density functional theory. This application is included in Material Sudio, and can evaluate electronic states and properties of various physical systems such as molecules, atomic clusters, crystals, and solid surfaces based on the all-electron method and the pseudopotential method. It can also be applied to evaluation of the chemical reaction such as catalysis and combustion reaction, and is optimized for large-scale parallel computing.

To Detail