ComDMFT

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

ComDMFT is a massively parallel computational package to study the electronic structure of correlated-electron systems. Users can perform a parameter-free method based on ab initio linearized quasiparticle self-consistent GW (LQSGW) and dynamical mean field theory (DMFT).

 

To Detail

C-Tools

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

This application can produce input files of various applications for density functional theory (DFT) calculations via user-friendly parameter adjustment using three-dimensional computer graphics (3DCG) and graphical user interfaces (GUI). Input-file conversion between different applications is also possible.

To Detail

CPMD

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles molecular dynamics simulation based on pseudo-potential and plane-wave basis set. This application enables accurate molecular dynamics by density functional theory and Car-Parrinello method. It also supports structure optimization, Born-Oppenheimer molecular dynamics, path-integral molecular dynamics, calculation of response functions, the QM/MM method, and excited-state calculation.

To Detail

Cirq

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A Python framework for easy creation, manipulation and optimization of quantum algorithms for NISQ (Noisy Intermediate Scale Quantum Computer). A simulator for the quantum processor in the Xmon architecture provided by Google has also been supported.

To Detail

Calypso

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for prediction of stable and metastable structures from a chemical composition. This application applies particle swarm optimization to predict material structures from results of the first-principles calculation by external packages (VASP, CASTEP, Quantum Espresso, GULP, SIESTA, CP2k). It has been applied to predict not only three-dimensional crystal structures, but also those of clusters and surfaces.

To Detail

CP2K

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source first-principles calculation library for pseudopotential and all-electron calculations. One of or a mixture of Gaussian and plane wave basis sets can be used. A lot of the development focuses on massively parallel calculations and linear scaling. The user can choose various calculation methods including density functional theory and Hartree-Fock.

To Detail

CIF2Cell

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

CIF2Cell is a tool to generate a crystal structure part of an input file of first-principles calculation software from crystal structure data file in CIF format. It supports various first-principles calculation codes such as ABINIT, Quantum Espresso, and VASP.

To Detail

CASINO

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for electronic structure calculation based on the diffusion Monte Carlo method. By using output of other packages of first-principles quantum-chemical calculation, this package performs electronic structure calculation with high accuracy. Although its computational cost is high, various physical quantities can be evaluated very accurately. It implements an efficient parallelization algorithm, and supports massively parallel computing.

To Detail

ChemSpider

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

ChemSpider is a free chemical structure database that provides fast access to over 100 million structures, properties, and related information, and is operated by the Royal Society of Chemistry.

By integrating and linking compounds from hundreds of high-quality data sources, ChemSpider makes it easy to find chemical data from diverse data sources that are freely available for online searching. Users can also add and manage data in a wikipedia-like fashion. Meanwhile, manual curation by the Royal Society of Chemistry continuously improves data quality.

To Detail

CCCM

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

CCCM is a high-order CCM (coupled cluster method) code for lattice spin systems. It is possible to obtain the ground state and its energy of quantum spin systems in two or three dimensions.

To Detail