OpenMX Viewer

  • Level of openness 3 ★★★
  • Document quality 0 ☆☆☆

OpenMX Viewer (Open source package for Material eXplorer Viewer) is a web-based graphical user interface (GUI) program for visualization and analysis of crystalline and molecular structures.

XYZ, CIF, OpenMX input/output, md(molecular dynamics) files, the Gaussian cube format such as electron density and molecular orbitals can be visualized quickly by drag-and-drop, and it is easy to analyze static/dynamic structural properties conveniently in a web browser. Several basic functionalities such as analysis of Mulliken charges, molecular dynamics, geometry optimization and band structure are included.

 

To Detail

KOBEPACK

  • Level of openness 3 ★★★
  • Document quality 0 ☆☆☆

An open-source program package for numerical diagonalization based on the Lanczos method, specialized for spin chains with unit spin magnitude, S=1. This package, which uses another open-source program package, TITPACK, calculates eigenenergies and eigenvectors of ground states and low-lying excited states of spin chains with finite length. By the subspace partitioning method, both memory and cpu-time requirements are considerably reduced.

To Detail

TINKER

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

An open-source application for molecular dynamics. This application can perform molecular dynamics simulation of biopolymers and solvents consisting of a number of molecules/atoms. It implements a number of force field sets and algorithms, and supports parallel computing based on OpenMP. Java graphical user interface (GUI) is also included.

To Detail

ArgusLab

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

An application for modeling and visualization of molecules for quantum chemical calculation. This application implements a construction of
molecular structures with classical molecular dynamics simulation and structure optimization by simple generic force fields, and a preparation of input files for applications of quantum chemical calculation such as Gaussian. A binary package for Windows XP is available, and informal packages for Windows 7, iPad, and Linux exist.

To Detail

DC-DFTB-MD

  • Level of openness 2 ★★☆
  • Document quality 0 ☆☆☆

An application for DFTB (Density Functional Tight Binding) calculation combined with Divide-and-Conquer (DC) method. The DC-DFTB-K program enables geometry optimization and molecular dynamics simulation of large molecular systems with linear-scaling computational cost. DFTB electronic structure calculation of 1 million atom system has been demonstrated using MPI/OpenMP hybrid parallel computation on the K computer.

To Detail

REM

  • Level of openness 3 ★★★
  • Document quality 0 ☆☆☆

An application for adding a function of the replica exchange method to the existing applications for molecular dynamics simulation such as MODYLAS, AMBER, and CHARMM. Without changing original programs of molecular dynamics, the replica exchange method can be implemented easily. This application also shows high performance in massive parallel computing by the K-computer.

To Detail

Quloud-RSDFT

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

Provides a complete set of environments necessary for computational materials science research in the cloud. A web browser is all that is needed to start a full range of first-principles simulations, including modeling, calculation, data storage, and analysis. RSDFT is used as the engine, and the lineup will be expanded in the future. Data can be shared within a group, and structural data from other software such as GAUSSIAN and VASP can be read.

To Detail

Advance/PHASE

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

Advance / PHASE is  software for first-principles calculation based on the density functional theory by using plane-wave basis and pseudopotentials. Since the electronic state is obtained based on quantum mechanics, highly accurate results can be obtained. It can be expected not only to analyze existing materials but also to design various metals, insulators, semiconductors, magnetic materials, dielectric materials, piezoelectric materials, and various other new materials.

To Detail

QMAS

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

QMAS is an ab-initio electronic-structure computational code package based on the projector augmented-wave (PAW) with a plane wave basis set. It computes electronic states and various physical properties efficiently with high precision for a wide range of physical systems. It provides geometry optimization, electronic states in a static magnetic field, permittivity distribution at the atomic-scale, energy and stress distribution, positron annihilation parameters, and so forth.

To Detail

RAQET

  • Level of openness 2 ★★☆
  • Document quality 1 ★☆☆

A program package for electronic state calculations based on two-component relativistic quantum chemical theories. Several schemes and algorithms, which are specialized in calculations of molecules containing heavy elements, have been implemented. Single-point energies for ground and excited states, geometry optimizations, and molecular properties are available. Furthermore, the package can perform accurate calculations for molecules including many heavy atoms such as metal clusters with practical computational cost.

To Detail