ArgusLab

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

An application for modeling and visualization of molecules for quantum chemical calculation. This application implements a construction of
molecular structures with classical molecular dynamics simulation and structure optimization by simple generic force fields, and a preparation of input files for applications of quantum chemical calculation such as Gaussian. A binary package for Windows XP is available, and informal packages for Windows 7, iPad, and Linux exist.

To Detail

DC-DFTB-MD

  • Level of openness 2 ★★☆
  • Document quality 0 ☆☆☆

An application for DFTB (Density Functional Tight Binding) calculation combined with Divide-and-Conquer (DC) method. The DC-DFTB-K program enables geometry optimization and molecular dynamics simulation of large molecular systems with linear-scaling computational cost. DFTB electronic structure calculation of 1 million atom system has been demonstrated using MPI/OpenMP hybrid parallel computation on the K computer.

To Detail

Advance/PHASE

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

Advance / PHASE is  software for first-principles calculation based on the density functional theory by using plane-wave basis and pseudopotentials. Since the electronic state is obtained based on quantum mechanics, highly accurate results can be obtained. It can be expected not only to analyze existing materials but also to design various metals, insulators, semiconductors, magnetic materials, dielectric materials, piezoelectric materials, and various other new materials.

To Detail

xTAPP

  • Level of openness 3 ★★★
  • Document quality 0 ☆☆☆

xTAPP is a first-principles plane-wave pseudo-potential code. It computes band structure and electronic states with high precision for a wide range of materials including metals, oxide surfaces, solid interfaces, and so forth. It has support tools and visualization of output and input, is available as a massively parallel computer using OpenMP, MPI, and GPGPU.

To Detail

almaBTE

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

An application for calculating thermal transport properties based on the phonon Boltzman equation. This application has its own database for phonon properties of materials, and can utilize it for evaluating heat conductivity and specific heat of crystals, alloys, and heterostructures combining them. Phonon-energy resolved contribution to heat conductivity and specific heat can also be calculated. This application also supports calculation of time-dependent response and steady state analysis.

To Detail

PARATEC

  • Level of openness 0 ☆☆☆
  • Document quality 0 ☆☆☆

PARATEC is a parallel DFT program package based on plane-wave basis and norm-conserving pseudopotential.

To Detail

SMASH

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Open source software for massively parallel quantum chemistry calculations. Energies and geometries of nano-sized molecules can be calculated without fragmentation. The program supports Hartree-Fock, density functional theory, and second-order Møller-Plesset perturbation theory calculations. The input format, execution method, and program structure are simple, and frequently used routines can be easily extracted.

To Detail

DDMRG

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

DDMRG (DynamicalDMRG) is a program for analyzing the dynamical properties of one-dimensional electron systems by using the density matrix renormalization group method. It simulates excited or photo-induced quantum phenomena in Mott insulators, spin-Peierls materials, organic materials, etc. Parallel computational procedures for linear and non-linear responses in low dimensional electron systems and analyzing routines for relaxation processes of excited states induced by photo-irradiation are available.

To Detail

fu-suite

  • Level of openness 2 ★★☆
  • Document quality 1 ★☆☆

A GUI program for structure modeling of giant molecules. This application consists of two programs, “fumodel” and “fuplot”. The former supports preparation of input data for FMO in GAMESS, whereas the latter is software for making graphs from numerical results obtained by FMO.

To Detail

ComDMFT

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

ComDMFT is a massively parallel computational package to study the electronic structure of correlated-electron systems. Users can perform a parameter-free method based on ab initio linearized quasiparticle self-consistent GW (LQSGW) and dynamical mean field theory (DMFT).

 

To Detail