POV-Ray

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for three-dimensional visualization with the ray tracing method. This application can visualize arbitrary positions and shapes of objects such as spheres and cubes. It can visualize three-dimensional data obtained from computational fluid dynamics etc. by volume rendering. It can also be used for simple three-dimensional graphical simulator with macro functions.

To Detail

peps-torch

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

peps-torch is a python library for calculation of quantum many-body problems on two dimensional lattices. Variational principles calculation is used with an infinite PEPS (iPEPS) as the trial wave function. Therefore, the ground state is obtained in the form of the element tensor of the iPEPS.  The energy of the trial state is estimated by the corner transfer matrix method (CTM), and its gradient with respect to the element tensor is computed through automatic differentiation provided by pytorch.  Functions/classes for exploiting the system’s symmetry are provided for reducing the computational cost if possible. While general models and lattices are not supported, many examples of stand-alone codes would make it relatively easy for users to write their own codes to suit their needs. pytorch is required.

To Detail

PyProcar

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A python library for pre- and post-processing of first-principles electronic structure calculations. As a pre-processing tool, it can automatically generate k-point pathways for first-principles calculations of band structures based on the crystal symmetry. It can also post-process first-principles calculation results to generate band structure and density of states plots with atomic species and orbital contributions, or visualize spin textures and Fermi surfaces. It also provides a functionality for band unfolding.

To Detail

pacemaker

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software tool for constructing interatomic potentials based on nonlinear atomic cluster expansion. It requires the user to either prepare a fitting dataset based on pandas and ASE, or it can automatically extract data from VASP calculation results. The obtained potentials can be used for molecular dynamics simulations using LAMMPS, and it also provides the capability to calculate extrapolation grades for on-the-fly active learning.

To Detail

Parsec

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Parsec is a DFT program package based on real space basis and norm-conserving pseudopotential.

To Detail

PolyParGen

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

PolyParGen is a free web application that automatically generates OPLS force field for molecular dynamics calculations. It is possible to create OPLS-AA parameters of macromolecules such as fullerenes with complex crosslinking structures, graphene and cyclic molecules. The generated OPLS-AA force field parameter file in Gromacs format is automatically sent to users.

To Detail

PFAPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Library for calculating Pfaffian (square root of determinant), which is defined for skew-symmetric matrices. Algorithms are implemented in several languages (Fortran, Python, Matlab, Mathematica) and users can choose favorite one. Interfaces for C are also provided.

To Detail

PySCF

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python-based simulations of chemistry framework (PySCF) is a general-purpose electronic structure platform written in Python. Users can perform mean-field and post-mean-field methods with standard Gaussian basis functions. This package also provides several interfaces to other software such as BLOCK and Libxc.

To Detail

PMlib

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open source library to record execution and communication time during specified regions in user’s program. C/C++ and Fortran API are provided. This can profile MPI & OpenMP hybrid parallel programs as well as serial ones.

To Detail

PHYSBO (optimization tools for PHYsics based on Bayesian Optimization )

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

PHYSBO is a Python library for researchers mainly in the materials science field to perform fast and scalable Bayesian optimization based on COMBO (Common Bayesian Optimization). Users can search the candidate with the largest objective function value from candidates listed in advance by using machine learning prediction. PHYSBO can handle a larger amount of data compared with standard implementations such as scikit-learn.

To Detail