MOPAC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for semi-empirical quantum chemical calculation based on NDDO (neglect of diatomic differential overlap) approximation. This program calculates, for a given molecule or a crystal, molecular orbits and atomic forces, as well as vibration spectra, thermal quantities (heat of formation etc.), isotopic exchange effect, force constant, and so on. It can also treat radicals and ions.

To Detail

Molekel

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for molecular modeling and visualization. This application supports data formats of Gaussian, GAMESS, ADF, and Molden, and has various options for drawing such as orbital, electron density, solvent accessible surface, van der Waals radii, and so on. It implements high-speed and high-quality rendering technology, and runs on Windows, Mac, and Linux.

To Detail

Molden

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for pre- and post-processing for quantum chemistry calculation. This application can handle outputs from Gaussian, GAMESS, and MOPAC as well as the result of other applications via the Molden format. It supports many graphical interfaces such as Postscript, XWindows, VRML, and OpenGL, and performs visualization of molecular orbitals and electron density. It also produces animation videos of molecular vibration.

To Detail

MDACP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

MDACP (Molecular Dynamics code for Avogadro Challenge Project) is an efficient implementations of classical molecular dynamics (MD) method for the Lennard-Jones particle systems. MDACP Ver. 1.xx adopts flat-MPI and Ver. 2.xx adopts MPI+OpenMP hybrid parallelization.

To Detail

MARBLE

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for molecular dynamics to simulate biopolymers such as proteins and nuclear acids. This application can perform high-speed molecular dynamics simulation by hybrid parallel computing maintaining high-accuracy energy conservation. This application also support high-speed calculation of long-range interaction based on the particle mesh Ewald method. The code is released under GPL lisense.

To Detail

MateriApps Installer

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of shell scripts for installing open-source applications and tools for computational materials science to macOS, Linux PC, cluster workstations, and major supercomputer systems in Japan. Major applications are preinstalled to the nation-wide joint-use supercomputer system at Institute for Solid State Physics, University of Tokyo by using MateriApps Installer.

To Detail

MateriApps LIVE!

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Debian Live Linux System that contains OS, editors, materials science application software, visualization tools, etc. An environment needed to perform materials science simulations is provided as a one package. By booting up on VirtualBox virtual machine, one can start simulations, such as the first-principles calculation, molecular dynamics, quantum chemical calculation, lattice model calculation, etc, immediately.

To Detail

Maxent

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Tool for performing analytical continuation for many-body Green’s functions by using the maximum entropy method. From the data of the Green functions on the imaginary axis, users can obtain the values of the Green’s functions on the real axis. This tool supports the several different Green’s functions (Bozonic, Fermionic, anomalous, etc.).

To Detail

McPhase

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A program package for physical properties related to magnetism. This application can evaluate various physical quantities of magnetics such as crystal fields, magnetic structures, thermodynamic quantities (magnetization, specific heat, etc.), and magnetic excitation. This package can also perform fitting analysis of neutron diffraction experiments and resonant X-ray diffraction experiments, and is helpful to experimentalists.

To Detail

MODYLAS

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

MODYLAS is a highly parallelized general-purpose molecular dynamics (MD) simulation program appropriate for very large physical, chemical, and biological systems. It is equipped most standard MD techniques including free energy calculations based on thermodynamic integration method. Long-range forces are evaluated rigorously by the fast multipole method (FMM) without using the fast Fourier transform (FFT) in order to realize excellent scalability. The program enables investigations of large-scale real systems such as viruses, liposomes, assemblies of proteins and micelles, and polymers. It works on ordinary linux machines, too.

To Detail