LIQ𝑈𝑖⏐〉 (Language-Integrated Quantum Operations, LIQUID)

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

LIQ𝑈𝑖⏐〉is a software design architecture for quantum computing. It includes a programming language designed for quantum algorithms. By using LIQ𝑈𝑖⏐〉, users can design quantum circuits and perform simulations such as quantum teleportation and quantum chemistry.

To Detail

FDMNES

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for first-principles calculation based on density functional theory (DFT) optimized for X-ray spectroscopy analysis. Theoretical prediction and data fitting for X-ray spectroscopy such as XANES(X-ray absorption fine structure), XMCD(X-ray magnetic circular dichroism), RXD(resonant X-ray diffraction) can be preformes. This application employs a fully relativistic LSDA calculation based on the finite element method, and also supports the LDA+U method and the TD-DFT calculation.

To Detail

DV-Xα

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing the DV-Xα method. It produces electronic structure for a wide rage of physical systems such as atoms, molecules and crystals. The DV-Xα method realizes high-speed computation for all-electron calculations, and makes it possible to evaluate various physical properties and electron transition probability (especially of core-electron excitation). Tools for supplying input data, and visualizing and post-processing output data are also released.

To Detail

exciting

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation based on all-electron calculations. In addition to ground-state energy and forces on atoms obtained by density functional theory, it focuses on investigation of excited state properties using time-dependent density functional theory as well as many-body perturbation theory. It is parallelized using MPI and is also optimized for multithreaded math libraries such as BLAS and LAPACK.

To Detail

SPRKKR

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A open-source application of first-principles calculation for the electronic structure, using the KKR method, a variant of Green’s function method. It is based on the density functional theory and is applicable to crystals and surfaces. The coherent potential approximation (CPA) is adopted, so it can handle not only periodic systems, but also disordered alloys. It can also handle spin-orbit interaction and non-collinear magnetism.

To Detail

IFEFFIT

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for data analysis of X-ray absorption fine structure (XAFS). By interactive operation using a command line, experimental data of XAFS can be analyzed by various analysis methods. This application also supports various useful functions such as high-speed Fourier analysis, fitting in the radial/k-space coordinates, and data plotting.

To Detail

JDFTx

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An application for first-principles calculation by the joint-DFT method based on a plane-wave basis. By implementation of the joint-DFT method, this application realizes a good convergence for electronic state calculation of molecules in liquid, particular for charged systems. This application is written by C++11, and supports GPU calculation by CUDA. This application also supports diffusive Monte Carlo simulation in cooperation with CASINO.

To Detail

PyMOL

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for visualization of biopolymers. This application can visualize biopolymers by using its original command line and graphical user interface, more than 600 settings for visualization, and more than 20 visualization schemes. This application also supports more than 30 file formats such as PDB and multi-SDF, and can utilize sophisticated visualization methods such as the ray tracing.

To Detail

Rokko

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A unified wrapper library for sequential and parallel versions of eigenvalue solvers. Sequential versions of dense-matrix diagonalization (LAPACK), parallel versions of dense-matrix diagonalization (EigenExa, ELPA, ScaLAPACK, etc.), and sequential/parallel versions of sparse-matrix diagonalization (SLEPc, Trilinos/Anasazi, etc.) can be installed quickly, and can be called from user’s program easily. Physical quantities written by eigenvalues or eigenvectors can also be evaluated by both sequential and parallel computation.

To Detail

PySCF

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python-based simulations of chemistry framework (PySCF) is a general-purpose electronic structure platform written in Python. Users can perform mean-field and post-mean-field methods with standard Gaussian basis functions. This package also provides several interfaces to other software such as BLOCK and Libxc.

To Detail