A structure database for proteins and nuclear acids. Three-dimensional structure data of proteins and nuclear acids (atomic coordinates determined experimentally by X-ray crystal analysis, NMR, etc.) can be downloaded. The data reposited in PDB are in the public domain, and can be accessed by everyone freely.
PARATEC is a parallel DFT program package based on plane-wave basis and norm-conserving pseudopotential.
Pomerol is an app for calculation one- and two-body Green’s function at finite temperatures for the Hubbard-type model based on the full exact diagonalization. Pomerol is written in C++ and supports the hybrid parallelization (MPI+openMP).
PolyParGen is a free web application that automatically generates OPLS force field for molecular dynamics calculations. It is possible to create OPLS-AA parameters of macromolecules such as fullerenes with complex crosslinking structures, graphene and cyclic molecules. The generated OPLS-AA force field parameter file in Gromacs format is automatically sent to users.
Python code for a chemical database, PubChem. Users can search data in PubChem by compound name, structural information and so on. It is also possible to receive outputs as a Pandas DataFrame.
Library for calculating Pfaffian (square root of determinant), which is defined for skew-symmetric matrices. Algorithms are implemented in several languages (Fortran, Python, Matlab, Mathematica) and users can choose favorite one. Interfaces for C are also provided.
Python-based simulations of chemistry framework (PySCF) is a general-purpose electronic structure platform written in Python. Users can perform mean-field and post-mean-field methods with standard Gaussian basis functions. This package also provides several interfaces to other software such as BLOCK and Libxc.
Open source library to record execution and communication time during specified regions in user’s program. C/C++ and Fortran API are provided. This can profile MPI & OpenMP hybrid parallel programs as well as serial ones.
PHYSBO is a Python library for researchers mainly in the materials science field to perform fast and scalable Bayesian optimization based on COMBO (Common Bayesian Optimization). Users can search the candidate with the largest objective function value from candidates listed in advance by using machine learning prediction. PHYSBO can handle a larger amount of data compared with standard implementations such as scikit-learn.
A python package for the tight-binding method. PythTB supports tight-binding calculations of electronic structures and Berry phase in various kinds of systems. Users can use ab initio parameters obtained by Wannier90.