QDS

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

QDS (Quantum Dynamics Simulator) is a program for computing magnetization curves and spectra of electron-spin resonance (ESR) in molecular magnets. Input data of this program can be magnetic interactions, the shape of a molecule, etc. Calculation is carried out with the combination of exact diagonalization, the quantum master equation, and the Kubo formula. It can be chosen whether the dissipation exists or not in the calculations of dynamical magnetization curves.

To Detail

RSPt

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for the first-principles calculation based on the all-electron method with localized bases. By adopting the full-potential LMTO method, high-speed electronic state calculation can be performed with a less number of bases compared with the standard all-electron method. There is no restriction on symmetries as in the LMTO-ASA method, and spin polarization and spin-orbit interaction can also be treated.

To Detail

QMAS

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

QMAS is an ab-initio electronic-structure computational code package based on the projector augmented-wave (PAW) with a plane wave basis set. It computes electronic states and various physical properties efficiently with high precision for a wide range of physical systems. It provides geometry optimization, electronic states in a static magnetic field, permittivity distribution at the atomic-scale, energy and stress distribution, positron annihilation parameters, and so forth.

To Detail

KOBEPACK

  • Level of openness 3 ★★★
  • Document quality 0 ☆☆☆

An open-source program package for numerical diagonalization based on the Lanczos method, specialized for spin chains with unit spin magnitude, S=1. This package, which uses another open-source program package, TITPACK, calculates eigenenergies and eigenvectors of ground states and low-lying excited states of spin chains with finite length. By the subspace partitioning method, both memory and cpu-time requirements are considerably reduced.

To Detail

xTAPP

  • Level of openness 3 ★★★
  • Document quality 0 ☆☆☆

xTAPP is a first-principles plane-wave pseudo-potential code. It computes band structure and electronic states with high precision for a wide range of materials including metals, oxide surfaces, solid interfaces, and so forth. It has support tools and visualization of output and input, is available as a massively parallel computer using OpenMP, MPI, and GPGPU.

To Detail

Materials Project

A results database of first-principle calculation for material science. This database provides numerical data of crystal structures, band structures, thermodynamic quantities, phase diagrams, magnetic moments, and so on. This site is maintained by a research group of MIT, and has extensive data of materials related to lithium battery. In addition to a user interface based on web browsers, an http-based API is also provided to enable user-defined material screening. This database can be used without charge after registration.

To Detail

AFLOWLIB

A results database of first-principle calculation for material science. This database provides numerical data of crystal structures, band structures, thermodynamic quantities, phase diagrams, magnetic moments, and so on. This site is maintained by a research group of Duke University, and in particular, has extensive data of Heusler alloys. In addition to a user interface based on web browsers, an http-based API is also provided to enable user-defined material screening. This database can be used without charge after registration.

To Detail