peps-torch

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

peps-torch is a python library for calculation of quantum many-body problems on two dimensional lattices. Variational principles calculation is used with an infinite PEPS (iPEPS) as the trial wave function. Therefore, the ground state is obtained in the form of the element tensor of the iPEPS.  The energy of the trial state is estimated by the corner transfer matrix method (CTM), and its gradient with respect to the element tensor is computed through automatic differentiation provided by pytorch.  Functions/classes for exploiting the system’s symmetry are provided for reducing the computational cost if possible. While general models and lattices are not supported, many examples of stand-alone codes would make it relatively easy for users to write their own codes to suit their needs. pytorch is required.

To Detail

n2p2

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package that implements Behler-Parinello type neural network potential. The package provides tools for training and evaluating potentials based on given structure-energy data. It also provides an interface with LAMMPS for performing molecular dynamics calculations.

To Detail

SIMPLE-NN

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.

To Detail

DeePMD-kit

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python/C++ based software package that employs deep learning techniques for construction of interatomic potentials. It implements the Deep Potential, which defines atomic environment descriptors with respect to a local reference frame. The output of many first-principles and molecular dynamics applications can be used as training data, and the trained potentials can be used for molecular dynamics calculations using LAMMPS and path integral molecular dynamics calculations using i-PI.

To Detail

QUIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of software tools for molecular dynamics calculations. Various interatomic potentials and tight binding models are implemented, and numerous external applications can be invoked. It also supports training and evaluation of GAP (Gaussian Approximation Potential), which is a form of machine learning potential.

To Detail

NequIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open source software for building and using machine learning potentials based on E(3)-equivariant graph neural networks, which can be trained on output files of simulation codes that can be read by ASE. Molecular dynamics calculations with LAMMPS can be performed using the trained potentials.

To Detail

Allegro

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open source software for constructing the Allegro potential model based on E(3)-equivariant graph neural networks and using the potential model for molecular dynamics simulations. The code depends on NequIP and can be run in a similar manner. Allegro scales better than NequIP since it doesn’t rely on message passing and the architecture is strictly local with respect to atom-wise environments.

To Detail

pacemaker

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software tool for constructing interatomic potentials based on nonlinear atomic cluster expansion. It requires the user to either prepare a fitting dataset based on pandas and ASE, or it can automatically extract data from VASP calculation results. The obtained potentials can be used for molecular dynamics simulations using LAMMPS, and it also provides the capability to calculate extrapolation grades for on-the-fly active learning.

To Detail

OQMD: The Open Quantum Materials Database

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A database for thermodynamic properties and crystal structures calculated based on the density functional theory by a research group in Northwestern University. OQMD provides over one million data generated by using not only experimental crystal structures provided by ICSD but also those obtained by calculations. Users can search data in OQMD by using Python API.

To Detail

qmpy

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python library for the Open Quantum Materials Database, a first-principles computational database. qmpy supports several analysis tools such as crystal structures and phase diagrams. Users can perform automatic calculations using VASP.

To Detail