ecalj

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source program package for first-principles calculation based on a mixed augmented plane wave method (the PMT method). For various physical systems, this package performs electronic structure calculation and structure optimization by LDA, GGA, LDA+U and so on. It further can treat quasi-particle excitation with high accuracy by the quasi-particle self-consistent GW method. It implements several original methods not included in other program packages, and is maintained by the version control system, Git.

To Detail

Qbox

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles molecular dynamics based on a pseudopotential method using plane bases. This application can perform electronic-state calculation and molecular dynamics employing the Car-Parrinello method. It implements MPI parallelization, which enables us to perform efficient parallel computing in various environments including large-scale parallel computers. The program is written in C++, and is distributed in source form under the GPL license.

To Detail

TRIQS/CTHYB

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source solver for the impurity problem based on the continuous-time quantum Monte Carlo method. Imaginary-time Green’s functions of the impurity Anderson model and the effective impurity model in the dynamical mean-field approximation can be calculated with high speed by using an efficient Monte Carlo algorithm. The main programs are written by C++, and can be called from Python scripts.

To Detail

SpM

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

A sparse-modeling tool for computing the spectral function from the imaginary-time Green function. It removes statistical errors in quantum Monte Carlo data, and performs a stable analytical continuation. The obtained spectral function fulfills the non-negativity and the sum rule. The computation is fast and free from tuning parameters.

To Detail

RSDFT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RSDFT is an ab-initio program with the real-space difference method and a pseudo-potential method. Using density functional theory (DFT), this calculates electronic states in a vast range of physical systems: crystals, interfaces, molecules, etc. RSDFT is suitable for highly parallel computing because it does not need the fast Fourier transformation. By using the K-computer, this program can calculate the electronic states of around 100,000 atoms. The Gordon Bell Prize for Peak-Performance was awarded to RSDFT in 2011.

To Detail

DMRG++

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for simulation based on the density-matrix renormalization group (DMRG). This application can perform high-speed calculation of low-dimensional quantum systems with high accuracy. It implements generic programming techniques in the C++ language, and can easily extend simulation to new models and geometries. It is developed putting emphasis on user-friendly interfaces and low dependences on environments.

To Detail

MateriApps Installer

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of shell scripts for installing open-source applications and tools for computational materials science to macOS, Linux PC, cluster workstations, and major supercomputer systems in Japan. Major applications are preinstalled to the nation-wide joint-use supercomputer system at Institute for Solid State Physics, University of Tokyo by using MateriApps Installer.

To Detail

DCore

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A tool for performing quantum many-body simulations based on dynamical mean-field theory. In addition to predefined models, one can construct and solve an ab-initio tight-binding model by using wannier 90 or RESPACK. We provide a post-processing tool for computing physical quantities such as the density of state and the momentum resolved spectral function. DCore depends on external libraries such as TRIQS and ALPSCore.

To Detail

Octopus

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on pseudo- potential and real-space basis. It performs electronic-state calculation such as band calculation of solids and structure optimization for a variety of physical systems. The method of time-dependent density functional theory (TDDFT) is implemented, which allows simulation of dynamical phenomena with real-time evolution of electronic states, such as chemical reaction and electronic response to time-dependent external fields. Comes with detailed tutorials and comprehensive manuals.

To Detail

CASINO

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for electronic structure calculation based on the diffusion Monte Carlo method. By using output of other packages of first-principles quantum-chemical calculation, this package performs electronic structure calculation with high accuracy. Although its computational cost is high, various physical quantities can be evaluated very accurately. It implements an efficient parallelization algorithm, and supports massively parallel computing.

To Detail