An open-source application for first-principles calculation based on pseudopotential and wavelet basis. Electronic state calculation of massive systems is performed with high accuracy and high efficiency by using adaptive mesh. Parallel computing by MPI, OpenMP, and GPU is also supported.
An open-source application for ab initio quantum chemical calculation. This application performs electronic structure calculation of molecules by the Hartree-Fock, density functional, many-body perturbation, configuration interaction theories, and so on. Even though this application is freeware, it succeeds in maintaining high-quality and high-performance codes by active development, and has a number of world-wide users. It histrically shares core programs with GAMESS-UK.
Kω implements large-scale parallel computing of the shifted Krylov subspace method. Using Kω, dynamical correlation functions can be efficiently calculated. This application includes a mini-application for calculating dynamical correlation functions of quantum lattice models such as the Hubbard model, the Kondo model, and the Heisenberg model in combination with the quantum lattice solver of quantum many-body problems, HΦ.
An open-source application for quantum chemical calculation. This application can perform quantum chemical calculation based on the Hartree-Fock method and the density functional method. The code is developed on the emphasis of readability and flexibility, and can be called from Python scripts. Quantum chemical calculation based on two-electron wave functions (geminals) is also possible.
Open-source program for first-principles calculation based on pseudo-potential and plane-wave basis. This package performs electronic-state calculation with high accuracy based on density functional theory. In addition to basic-set programs, many core-packages and plugins are included. This package can be utilized for academic research and industrial development, and also supports parallel computing.
An application for quantum chemical calculation based on DFTB (Density Functional based Tight Binding). This application performs structure
optimization and molecular dynamics by the DFTB force field as well as ordinary energy calculation, and implements parallel computing by OpenMP. A tool for visualization of molecular orbitals and an extended versions supporting MPI parallel computation or electron transport calculation by the nonequilibrium Green’s function method are also
available.
ALPS is a numerical simulation library for strongly correlated systems such as magnetic materials or correlated electrons. It contains typicalsolvers for strongly correlated systems: Monte Carlo methods, exact diagonalization, the density matrix renormalization group, etc. It can be used to calculate heat capacities, susceptibilities, magnetization processes in interacting spin systems, the density of states in strongly correlated electrons, etc. A highly efficient scheduler for parallel computing is another improvement.
※Related links are temporary changed due to the server maintenance for ALPS project.
Tool for performing analytical continuation for many-body Green’s functions by using the maximum entropy method. From the data of the Green functions on the imaginary axis, users can obtain the values of the Green’s functions on the real axis. This tool supports the several different Green’s functions (Bozonic, Fermionic, anomalous, etc.).
xTAPP is a first-principles plane-wave pseudo-potential code. It computes band structure and electronic states with high precision for a wide range of materials including metals, oxide surfaces, solid interfaces, and so forth. It has support tools and visualization of output and input, is available as a massively parallel computer using OpenMP, MPI, and GPGPU.
AkaiKKR is a first-principles all-electron code package that calculates the electronic structure of condensed matters using the Green’s function method (KKR). It is based on the density functional theory and is applicable to a wide range of physical systems. It can be used to simulate not only periodic crystalline solids, but also used to calculate electronic structures of impurity systems and, by using the coherent potential approximation (CPA), random systems such as disordered alloys, mixed crystals, and spin-disordered systems.