ONETEP

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for first-principles calculation based on the order-N method. This application can perform electronic-state calculation and band calculation for various physical systems. It supports the DFT+U method, the time-dependent DFT method, molecular dynamics, etc., and can also treat van der Waals forces and phonons. By using support applications, generation of input files, transformation between different file formats, and analysis of numerical results can be performed.

To Detail

DDMRG

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

DDMRG (DynamicalDMRG) is a program for analyzing the dynamical properties of one-dimensional electron systems by using the density matrix renormalization group method. It simulates excited or photo-induced quantum phenomena in Mott insulators, spin-Peierls materials, organic materials, etc. Parallel computational procedures for linear and non-linear responses in low dimensional electron systems and analyzing routines for relaxation processes of excited states induced by photo-irradiation are available.

To Detail

RSPACE

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

RSPACE is a first-principles code package based on a real-space finite-difference pseudo-potential method. It computes electronic states with high-speed and high precision in aperiodic systems of surfaces, solid interfaces, clusters, nanostructures, and so forth. It provides large-scale computing for semiconductor devices of nanostructure surface and interface reactions, calculation of transport properties in semi-infinite boundary conditions, and a massively parallel computing using the space partitioning method.

To Detail

QMAS

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

QMAS is an ab-initio electronic-structure computational code package based on the projector augmented-wave (PAW) with a plane wave basis set. It computes electronic states and various physical properties efficiently with high precision for a wide range of physical systems. It provides geometry optimization, electronic states in a static magnetic field, permittivity distribution at the atomic-scale, energy and stress distribution, positron annihilation parameters, and so forth.

To Detail

STATE

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

STATE is a first-principles plane-wave pseudo-potential code. It provides electronic state calculations and molecular dynamics simulations. This code is suitable for simulating chemical reactions at solid surfaces and solid–liquid interfaces, i.e., It is able to investigate reaction paths and activation barriers of chemical processes at interfaces. It can also include Van der Waals corrections to conventional density functional theory.

To Detail

Osaka2k

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and plane-wave basis sets. This application is capable of performing electronic structure calculations of a wide range of physical systems such as crystals and surfaces/interfaces. It supports structure relaxation, phonon-dispersion calculation, and molecular dynamics simulation, and can deal with systems with the spin-orbit interaction.

To Detail

Winmostar

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

Integrated applications for quantum chemical, molecular dynamics, and first-principles calculations. Users can perform all the operations necessary for simulation by mouse operation, from creating input files, to performing calculations, to analyzing and displaying results. It supports open source software such as GAMESS, NWChem, Gromacs, LAMMPS, Quantum ESPRESSO and OpenMX, as well as industry-standard software such as MOPAC and Gaussian.

To Detail

Firefly

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for ab initio quantum chemical calculation. This application performs electronic structure calculation of molecules by the Hartree-Fock, density functional, the many-body perturbation, configuration interaction theories, and so on. While this application is a derivative of GAMESS-US for specific use of Intel compatible CPU, it does not include recently developed calculation methods such as the CC and FMO methods.

To Detail

CP2K

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source first-principles calculation library for pseudopotential and all-electron calculations. One of or a mixture of Gaussian and plane wave basis sets can be used. A lot of the development focuses on massively parallel calculations and linear scaling. The user can choose various calculation methods including density functional theory and Hartree-Fock.

To Detail

DV-Xα

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing the DV-Xα method. It produces electronic structure for a wide rage of physical systems such as atoms, molecules and crystals. The DV-Xα method realizes high-speed computation for all-electron calculations, and makes it possible to evaluate various physical properties and electron transition probability (especially of core-electron excitation). Tools for supplying input data, and visualizing and post-processing output data are also released.

To Detail