RSDFT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RSDFT is an ab-initio program with the real-space difference method and a pseudo-potential method. Using density functional theory (DFT), this calculates electronic states in a vast range of physical systems: crystals, interfaces, molecules, etc. RSDFT is suitable for highly parallel computing because it does not need the fast Fourier transformation. By using the K-computer, this program can calculate the electronic states of around 100,000 atoms. The Gordon Bell Prize for Peak-Performance was awarded to RSDFT in 2011.

To Detail

BigDFT

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on pseudopotential and wavelet basis. Electronic state calculation of massive systems is performed with high accuracy and high efficiency by using adaptive mesh. Parallel computing by MPI, OpenMP, and GPU is also supported.

To Detail

MOPAC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for semi-empirical quantum chemical calculation based on NDDO (neglect of diatomic differential overlap) approximation. This program calculates, for a given molecule or a crystal, molecular orbits and atomic forces, as well as vibration spectra, thermal quantities (heat of formation etc.), isotopic exchange effect, force constant, and so on. It can also treat radicals and ions.

To Detail

pacemaker

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software tool for constructing interatomic potentials based on nonlinear atomic cluster expansion. It requires the user to either prepare a fitting dataset based on pandas and ASE, or it can automatically extract data from VASP calculation results. The obtained potentials can be used for molecular dynamics simulations using LAMMPS, and it also provides the capability to calculate extrapolation grades for on-the-fly active learning.

To Detail

Firefly

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for ab initio quantum chemical calculation. This application performs electronic structure calculation of molecules by the Hartree-Fock, density functional, the many-body perturbation, configuration interaction theories, and so on. While this application is a derivative of GAMESS-US for specific use of Intel compatible CPU, it does not include recently developed calculation methods such as the CC and FMO methods.

To Detail

DC-DFTB-MD

  • Level of openness 2 ★★☆
  • Document quality 0 ☆☆☆

An application for DFTB (Density Functional Tight Binding) calculation combined with Divide-and-Conquer (DC) method. The DC-DFTB-K program enables geometry optimization and molecular dynamics simulation of large molecular systems with linear-scaling computational cost. DFTB electronic structure calculation of 1 million atom system has been demonstrated using MPI/OpenMP hybrid parallel computation on the K computer.

To Detail

QMAS

  • Level of openness 1 ★☆☆
  • Document quality 1 ★☆☆

QMAS is an ab-initio electronic-structure computational code package based on the projector augmented-wave (PAW) with a plane wave basis set. It computes electronic states and various physical properties efficiently with high precision for a wide range of physical systems. It provides geometry optimization, electronic states in a static magnetic field, permittivity distribution at the atomic-scale, energy and stress distribution, positron annihilation parameters, and so forth.

To Detail

RuNNer

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

FORTRAN-based software package developed by the Behler Group for implementing Behler-Parinello neural network potentials. Potentials can be constructed, evaluated, and used for molecular dynamics simulations using LAMMPS. The newest generation of neural network potentials that take into account long-range electrostatic interactions are implemented.

To Detail

Osaka2k

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and plane-wave basis sets. This application is capable of performing electronic structure calculations of a wide range of physical systems such as crystals and surfaces/interfaces. It supports structure relaxation, phonon-dispersion calculation, and molecular dynamics simulation, and can deal with systems with the spin-orbit interaction.

To Detail

MLIP

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

Software package that implements moment tensor potentials. Potentials can be trained and used for molecular dynamics calculations using LAMMPS. Active learning combined with molecular dynamics calculations is also available.

To Detail