FMO in GAMESS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

The fragment molecular orbital (FMO) method can efficiently do quantum-mechanical calculations of large molecular systems by splitting the whole system into small fragments. The FMO program is distributed within quantum-chemical program suite GAMESS-US. FMO can provide various information regarding the structure and function of biopolymers, such as the interaction between a protein and a ligand.

To Detail

pymatgen

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A python library for materials analysis. Flexible classes for representation of materials are prepared, and data for crystal structures and various material properties can be handled efficiently. This application can performs analysis of phase diagrams, Pourbaix diagrams, diffusion analyses etc. as well as electronic structure analyses such as density of states and band structures. This software is being actively developed keeping close relation with Materials Project.

To Detail

RSPt

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An open-source application for the first-principles calculation based on the all-electron method with localized bases. By adopting the full-potential LMTO method, high-speed electronic state calculation can be performed with a less number of bases compared with the standard all-electron method. There is no restriction on symmetries as in the LMTO-ASA method, and spin polarization and spin-orbit interaction can also be treated.

To Detail

NequIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open source software for building and using machine learning potentials based on E(3)-equivariant graph neural networks, which can be trained on output files of simulation codes that can be read by ASE. Molecular dynamics calculations with LAMMPS can be performed using the trained potentials.

To Detail

Nano-Ignition

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A support application for preparing input files of molecular dynamics calculation. This application supports manual input of atomic coordinates and bond informations, reading files of protain structure database, and editing data by graphical user interface. It also implements various functions such as addition of hydrogen atoms and composition of data. and can treat a large number of atoms using only a moderate memory cost.

To Detail

Allegro

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open source software for constructing the Allegro potential model based on E(3)-equivariant graph neural networks and using the potential model for molecular dynamics simulations. The code depends on NequIP and can be run in a similar manner. Allegro scales better than NequIP since it doesn’t rely on message passing and the architecture is strictly local with respect to atom-wise environments.

To Detail

VASP TST tools

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A package including patches and scripts for adding transition-state calculation to the first-principles calculation application VASP. This package adds new functions to VASP such as calculation of reaction paths, transition-state structures, and rate constants, as well as a set of scripts for setting up calculations and analyzing results. A program for the Bader analysis for atomic charge assignment is also included.

To Detail

RSDFT

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RSDFT is an ab-initio program with the real-space difference method and a pseudo-potential method. Using density functional theory (DFT), this calculates electronic states in a vast range of physical systems: crystals, interfaces, molecules, etc. RSDFT is suitable for highly parallel computing because it does not need the fast Fourier transformation. By using the K-computer, this program can calculate the electronic states of around 100,000 atoms. The Gordon Bell Prize for Peak-Performance was awarded to RSDFT in 2011.

To Detail

BigDFT

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for first-principles calculation based on pseudopotential and wavelet basis. Electronic state calculation of massive systems is performed with high accuracy and high efficiency by using adaptive mesh. Parallel computing by MPI, OpenMP, and GPU is also supported.

To Detail

MOPAC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for semi-empirical quantum chemical calculation based on NDDO (neglect of diatomic differential overlap) approximation. This program calculates, for a given molecule or a crystal, molecular orbits and atomic forces, as well as vibration spectra, thermal quantities (heat of formation etc.), isotopic exchange effect, force constant, and so on. It can also treat radicals and ions.

To Detail