A pre/post-processing application for SIESTA and TranSIESTA. This application can calculate phonon frequencies, electron-phonon coupling, and contributions of inelastic scattering to the conductance. It also provides a Python interface for accessing data in the Hamiltonian output from SIESTA.
A tool for performing Bader analysis of assigning electron density of molecules and solids to individual atoms. Binaries for Linux and Mac OS X, as well as source code is provided under the GPL. The code is written in fortran90, and can handle charge density data in VASP CHGCAR and Gaussian Cube formats.
An application for the single-crystal analysis and the Rietveld analysis used in X-ray and neutron diffraction experiments. This application determines crystal structure models of materials from X-ray and neutron diffraction data on single-crystal and powder samples. It has been developed based on Python. Graphical user interface (GUI) can be used.
A tool to extract numerical data from graphs in pictures. Operations of GSYS is based on the GUI and it is easy to generate the numerical data from the given graph.
A post-processor of first-principles calculations for performing COHP (crystal orbital Hamilton population) and COOP (crystal orbital overlap population) chemical bonding analysis. It works with VASP, ABINIT and Quantum ESPRESSO output. The program is provided under an academic-only license.
An application for evaluation of thermoelectric properties and its visualization. Seebeck coefficients and Peltier coefficients can be calculated from output of the first-principles applications, OpenMX and TranSIESTA. Obtained results as well as electron density and density of states can be visualized.
An open-source application for evaluating superconducting gaps from resutls of the first-principles calculation by Quantum ESPRESSO. By calculating electron-phonon interaction and screened Coulomb interaction from the first-principles calculation, superconducting gaps can be obtained from the gap equation. Quasiparticle densities of states and ultrasonic attenuation rates can also be calculated.
An application for prediction of stable and metastable structures from a chemical composition. This application applies the revolutionary algorithm to structure prediction by using various external energy calculators (VASP, GULP, Quantum Espresso, CASTEP).
Code for unfolding first-principles electronic energy bands calculated using supercells into the corresponding primary-cell Brillouin zone. It uses maximally-localized Wannier functions calculated using Wannier90.
A library related to the symmetry of crystal structures. By providing a crystal structure, Spglib can detect information related to the symmetry of the structure, such as symmetry operations, a space group and a primitive cell. It can also generate irreducible wave numbers. Spglib is written in C, but various interfaces are available, including Python, Fortran, and Rust.