ParaView

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for analysis and visualization of two- and three-dimensional data. The function of this application can be used not only by interactive operation with three-dimensional display, but also by batch processing. This application supports various environments such as Windows, Mac, and Linux from a desktop PC to a supercomputer performing large scale parallel computation.

To Detail

IFEFFIT

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for data analysis of X-ray absorption fine structure (XAFS). By interactive operation using a command line, experimental data of XAFS can be analyzed by various analysis methods. This application also supports various useful functions such as high-speed Fourier analysis, fitting in the radial/k-space coordinates, and data plotting.

To Detail

Thermo-Calc

  • Level of openness 0 ☆☆☆
  • Document quality 3 ★★★

An application for evaluating thermodynamic quantities and phase diagrams of alloys and compounds. This application can calculate thermal-equilibrium phase diagrams and thermodynamic quantities of alloys and compounds in combination with databases, and can be utilized for evaluation and prediction of physical properties in materials science and metallurgy. It supports various models of thermodynamics, and also includes useful tools for plotting phase diagrams.

To Detail

CLUPAN

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Program libraries for alloy modeling analysis using a cluster expansion method. Energy of alloy systems evaluated by other electronic state calculation libraries is used as an input, and atomic configuration effects are evaluated with the accuracy of a first principles calculation. Ground state structures, evaluation of thermodynamic quantities, equilibrium diagrams, disordering by temperature, etc. can be calculated with high accuracy.

To Detail

MateriApps LIVE!

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Debian Live Linux System that contains OS, editors, materials science application software, visualization tools, etc. An environment needed to perform materials science simulations is provided as a one package. By booting up on VirtualBox virtual machine, one can start simulations, such as the first-principles calculation, molecular dynamics, quantum chemical calculation, lattice model calculation, etc, immediately.

To Detail

DISCUS

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open source application to simulate crystal structures and to calculate and refine against diffraction pattern and the pair distribution function. A special emphasis placed is on the simulation of materials with disorder and the package provides many tools to create and distribute defects throughout the crystal. Another strong feature is the simulation of nanoparticles.

To Detail

BerkeleyGW

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

BerkeleyGW is an open-source program package to calculate quasi-particle spectrum and optical responses from mean-field result by using GW approximation and Bethe-Salpeter equation. This is compatible with output files of many commonly used DFT codes such as Quantum ESPRESSO.

To Detail

BoltzTraP2

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An application for calculating transport coefficients based on the Boltzman equation. Within the relaxation time approximation, transport coefficients such as the Hall coefficient and the Seebeck coefficient can be evaluated from the output of the first principles calculation applications (Wien2k, ABINIT, SIESTA, quantum ESPRESSO, VASP). If users can measure relaxation time experimentally, electric conductivity can also be evaluated.

To Detail

Atomic Simulation Environment (ASE)

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A set of python modules for modeling atomic structures, running simulations, and visualizing results. These modules provide interfaces for various application of first-principles calculation, classical molecular dynamics, and quantum chemical calculation through GUI, command line, or python scripts. The source code is available under the LGPL.

To Detail

Advance/NanoLabo

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Advance / NanoLabo is an integrated GUI which can graphically operates various calculation solvers such as Quantum ESPRESSO, LAMMPS, Advance / PHASE. It is easy to set modeling and calculation conditions by automatically searching information in typical materials databases such as Materials Project. Results calculated by solvers are graphically displayed instantaneously.

To Detail