BLOCK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for quantum chemical calculation based on the density-matrix renormalization group (DMRG). For systems with a number of atomic orbitals, low-lying energy eigenvalues can be calculated in high accuracy of order of 1kcal/mol. This application is suitable especially to calculation of multi-orbital systems with one-dimensional topology such as chain-like or circular-like configuration of orbits.

To Detail

Rokko

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A unified wrapper library for sequential and parallel versions of eigenvalue solvers. Sequential versions of dense-matrix diagonalization (LAPACK), parallel versions of dense-matrix diagonalization (EigenExa, ELPA, ScaLAPACK, etc.), and sequential/parallel versions of sparse-matrix diagonalization (SLEPc, Trilinos/Anasazi, etc.) can be installed quickly, and can be called from user’s program easily. Physical quantities written by eigenvalues or eigenvectors can also be evaluated by both sequential and parallel computation.

To Detail

BEEMs

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

BEEMs is a Bayesian optimization tool of Effective Models (BEEMs). In BEEMs, the quantum lattice model solver HΦ is used as a forward problem solver to compute the magnetisation curve based on the given Hamiltonian. The deviation between the obtained magnetisation curve and the target magnetisation curve is used as a cost function, and the Bayesian optimization library PHYSBO is used to propose the next candidate point of the Hamiltonian for searching the minimum cost function

To Detail

McPhase

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A program package for physical properties related to magnetism. This application can evaluate various physical quantities of magnetics such as crystal fields, magnetic structures, thermodynamic quantities (magnetization, specific heat, etc.), and magnetic excitation. This package can also perform fitting analysis of neutron diffraction experiments and resonant X-ray diffraction experiments, and is helpful to experimentalists.

To Detail

Pomerol

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

Pomerol is an app for calculation one- and two-body Green’s function at finite temperatures for the Hubbard-type model based on the full exact diagonalization. Pomerol is written in C++ and supports the hybrid parallelization (MPI+openMP).

To Detail

PFAPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Library for calculating Pfaffian (square root of determinant), which is defined for skew-symmetric matrices. Algorithms are implemented in several languages (Fortran, Python, Matlab, Mathematica) and users can choose favorite one. Interfaces for C are also provided.

To Detail

TRIQS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A library collection for numerical calculation of interacting quantum systems. Modern programming techniques are used in this library to implement common tasks for solving quantum impurity problems in dynamic mean-field theory in a simple and efficient way. It is written in C++ and Python, and includes tutorials using Jupyter Notebook.

To Detail

ALF (Algorithms for Lattice Fermions)

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

A package for the auxiliary field Quantum Monte Carlo method, which enables us to calculate finite-temperature properties of the Hubbard-type model. It is also possible to treat the Hubbard model coupled to a transversed Ising field. Many examples such as Hubbard model on the square lattice and the honeycomb lattice are provided in the documentation.

To Detail

RESPACK

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

RESPACK is a first-principles calculation software for evaluating the interaction parameters of materials. It is able to calculate the maximally localized Wannier functions, the RPA response functions, and frequency-dependent electronic interaction parameters. RESPACK receives its input data from a band calculation using norm-conserving pseudopotentials with plane-wave basis sets. Utilities which convert a result of xTAPP or Quantum ESPRESSO to an input for RESPACK are prepared. The software has been used successfully for a wide range of materials such as metals, semiconductors, transition-metal compounds, and organic compounds. It supports OpenMP / MPI parallelization.

To Detail

TC++

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

TC++ is open-source software for ab initio calculations using the transcorrelated (TC) method. In TC++, users can take account of electron correlations in a Jastrow correlation factor based on the TC method. Electronic structures obtained by Quantum ESPRESSO can be used as an initial state of TC++.

To Detail