TC++ is open-source software for ab initio calculations using the transcorrelated (TC) method. In TC++, users can take account of electron correlations in a Jastrow correlation factor based on the TC method. Electronic structures obtained by Quantum ESPRESSO can be used as an initial state of TC++.

An application for visualization of large-scale many-particle simulation. This application can visualize information on a large number of particles treated in calculation of gravitational many-body problems, and provides many features for creating animations. It implements high-speed visualization with OpenGL, and supports graphical user interface (GUI) for operations.

An open-source application for quantum chemical calculation. This application can perform quantum chemical calculation based on the Hartree-Fock method and the density functional method. The code is developed on the emphasis of readability and flexibility, and can be called from Python scripts. Quantum chemical calculation based on two-electron wave functions (geminals) is also possible.

Software package that implements Behler-Parinello type neural network potential. The package provides tools for training and evaluating potentials based on given structure-energy data. It also provides an interface with LAMMPS for performing molecular dynamics calculations.

An open-source application for semi-empirical quantum chemical calculation based on NDDO (neglect of diatomic differential overlap) approximation. This program calculates, for a given molecule or a crystal, molecular orbits and atomic forces, as well as vibration spectra, thermal quantities (heat of formation etc.), isotopic exchange effect, force constant, and so on. It can also treat radicals and ions.

An open-source application for obtaining optimized many-body wavefunctions expressed by matrix product states (MPS). By using a second-generation density matrix renormalization group (DMRG) algorithm, many-body wave functions can be efficiently optimized. The quantum-chemical operators are represented by matrix product operators (MPOs), which provides flexibility to accommodate various symmetries and relativistic effects.

Open source software for massively parallel quantum chemistry calculations. Energies and geometries of nano-sized molecules can be calculated without fragmentation. The program supports Hartree-Fock, density functional theory, and second-order Møller-Plesset perturbation theory calculations. The input format, execution method, and program structure are simple, and frequently used routines can be easily extracted.

Fortran codes for computing the specified k-th eigenvalue and eigenvector for generalized symmetric definite eigenvalue problems. Sylvester’s law of inertia is employed as the fundamental principle in computations, and the sparse direct linear solver (MUMPS) is used in the main routine. By inputting Hamiltonian and its overlap matrices, user can compute electron’s energy and its wave function in the specified k-th energy level.

An open-source application for general-purpose quantum chemical calculation, laying emphasis on excited states and time evolution. It is based on time-dependent density functional theory (TDDFT) and the QM/MM calculation. It enables efficient massive parallel computing up to one hundred thousands processes. It supports the relativistic effect and offers the basis choice between the Gaussian basis and the plane-wave basis.

Software package to implement Behler-Parinello neural network potentials. Potentials can be trained from structure-energy/ interatomic forces/stress data, and molecular dynamics calculations using LAMMPS can also be performed using learned potentials. A prediction uncertainty measure can also be calculated simultaneously.