EDlib is an app for performing finite-temperature exact diagonalizations for quantum many-body systems. EDlib is written in C++ and it is possible to obtain finite-temperature properties such as the one-body Green’s function in the Hubbard model and the Anderson model.
Open-source software for quantum computing in quantum chemistry. OpenFermion can map the ab-initio Hamiltonian of an target molecular or material in second quantization to that in qubits. Parameters of the Hamiltonian is estimated by using other software for first-principles calculations. OpenFermion also provides users plugins to support integration with apps for quantum circuits and quantum simulators.
Ab initio quantum Monte Carlo solver for both molecular and bulk electronic systems. By using the geminal/Pfaffian wavefunction with the Jastrow correlator as the trial wavefunction, users can perform highly accurate variational calculations, structural optimizations and ab initio molecular dynamics for both classical and quantum nuclei.
A python package for the tight-binding method. PythTB supports tight-binding calculations of electronic structures and Berry phase in various kinds of systems. Users can use ab initio parameters obtained by Wannier90.
Software package that implements Behler-Parinello type neural network potential. The package provides tools for training and evaluating potentials based on given structure-energy data. It also provides an interface with LAMMPS for performing molecular dynamics calculations.
FORTRAN-based software package developed by the Behler Group for implementing Behler-Parinello neural network potentials. Potentials can be constructed, evaluated, and used for molecular dynamics simulations using LAMMPS. The newest generation of neural network potentials that take into account long-range electrostatic interactions are implemented.
Software package that implements moment tensor potentials. Potentials can be trained and used for molecular dynamics calculations using LAMMPS. Active learning combined with molecular dynamics calculations is also available.
An open-source application of semi-empirical/ab-initio quantum chemical calculation that comes under an academic license. It performs various quantum chemical calculations based on Hartree-Fock theory, density functional theory, and configuration interaction theory, yielding electronic states and enabling structure optimization and molecular spectrum analysis. Molecular dynamics calculation based on the QM/MM method is also possible by using this software in combination with GROMACS.
Python/C++ based software package that employs deep learning techniques for construction of interatomic potentials. It implements the Deep Potential, which defines atomic environment descriptors with respect to a local reference frame. The output of many first-principles and molecular dynamics applications can be used as training data, and the trained potentials can be used for molecular dynamics calculations using LAMMPS and path integral molecular dynamics calculations using i-PI.
A collection of software tools for molecular dynamics calculations. Various interatomic potentials and tight binding models are implemented, and numerous external applications can be invoked. It also supports training and evaluation of GAP (Gaussian Approximation Potential), which is a form of machine learning potential.