EVO

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

An application for structure prediction based on the evolutionary algorithm. From an input of the atomic position in a unit cell and possible elements at each atomic position, this application predicts the stable structure and composition from the first-principles calculation and molecular dynamics in combination with the evolutionary algorithm. This application is written in Python, and uses Quantum ESPRESSO and GULP as an external program.

To Detail

COMmon Bayesian Optimization Library (COMBO)

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

COMmon Bayesian Optimization Library (COMBO) is an open source python library for machine learning techniques. COMBO is amenable to large scale problems, because the computational time grows only linearly as the number of candidates increases. Hyperparameters of a prediction model can be automatically learned from data by maximizing type-II likelihood.

To Detail

QUIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of software tools for molecular dynamics calculations. Various interatomic potentials and tight binding models are implemented, and numerous external applications can be invoked. It also supports training and evaluation of GAP (Gaussian Approximation Potential), which is a form of machine learning potential.

To Detail

XenonPy

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

XenonPy is a high-throughput material exploration framework based on machine learning technologies. This library can generate various chem/phys descriptors for machine learning to explore materials in virtual environment. Descriptors in matminer can be also used. Model training is done by PyTorch. Visualization tool for descriptor and transfer learning framework are also provided.

To Detail

NetKet

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and machine learning techniques. Users can perform machine learning algorithms to find the ground-state of many-body Hamiltonians such as supervised learning of a given state and optimization of neural network states by using the variational Monte Carlo method.

To Detail

NequIP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open source software for building and using machine learning potentials based on E(3)-equivariant graph neural networks, which can be trained on output files of simulation codes that can be read by ASE. Molecular dynamics calculations with LAMMPS can be performed using the trained potentials.

To Detail

iqspr

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

isqpr is an R package to find candidate molecules that has your desired chemical structures and chemical properties. SMILES (Simplified Molecular Input Line Entry Specification Syntax) is employed to represent chemical structures. To find candidate molecules, sequential Monte Carlo method generates  new molecules, whose chemical properties are predicted by machine learning techniques.

To Detail

aenet (ænet, The Atomic Energy Network)

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

aenet is software for atomic interaction potentials using artificial neural networks. Users can construct neural network potentials using structures of target materials and their energies obtained from first principle calculations. The generated potentials can be used to molecular dynamics or Monte Carlo simulations.

To Detail

Allegro

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open source software for constructing the Allegro potential model based on E(3)-equivariant graph neural networks and using the potential model for molecular dynamics simulations. The code depends on NequIP and can be run in a similar manner. Allegro scales better than NequIP since it doesn’t rely on message passing and the architecture is strictly local with respect to atom-wise environments.

To Detail

QuCumber

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

QuCumber is an open-source Python package that implements neural-network quantum state reconstruction of many-body wavefunctions from measurement data such as magnetic spin projections, orbital occupation number. Given a training dataset of measurements, QuCumber discovers the most likely quantum state compatible with the measurements by finding the optimal set of parameters of a restricted Boltzmann machine (RBM).

.

To Detail