Ferromagnetism in CeRh₆Ge₄: A DFT+DMFT study

Junya OTSUKI

Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530

CeRh₆Ge₄ is a cerium-based compound that exhibits a ferromagnetic transition at $T_c = 2.5$ K. It has attracted significant attention due to the observation of a ferromagnetic quantum critical point under pressure, and associated non-Fermi-liquid behavior. Central to understanding these phenomena is the nature of Ce 4f electrons—whether they are localized or itinerant—and the mechanism stabilizing the ferromagnetic order. We investigate the ferromagnetic order in CeRh₆Ge₄, applying a recently developed method that succeeded in reproducing the quadrupolar ordering in a prototypical material, CeB₆ [1].

We employ a combination of density functional theory (DFT) and dynamical mean-field theory (DMFT) to investigate the magnetic properties of CeRh₆Ge₄. We begin with DFT calculations assuming itinerant 4f electrons, then incorporate strong local Coulomb interactions through DMFT, yielding localized 4felectrons. These calculations were done using the open-source software DCore [2]. With the converged solution in DFT+DMFT, we calculate the momentum-dependent susceptibilities using the strong-coupling-limit (SCL) formula, which was derived by approximating the Bethe-Salpeter equation in the DMFT [3]. We used the FAT node of the system B to treat the system size (the division of the Brillouin zone) up to $24 \times 24 \times 42$.

The results for the momentum-dependent susceptibilities reveal that the nearest-neighbor exchange interaction along the c-axis forms ferromagnetic chains, while weaker and anisotropic interactions in the ab-plane align these chains [4]. The intersite interactions

follow an RKKY-like decay and are spinisotropic along the c-axis but spin-anisotropic within the plane. The calculated transition temperature $T_c \approx 3.2$ K is in reasonable agreement with experiment, though slightly overestimated due to mean-field nature of the DMFT.

This work successfully reproduces the ferromagnetic ground state of $CeRh_6Ge_4$ using a localized 4f electron model and elucidates the microscopic origin of the magnetic ordering via intersite exchange interactions. It provides compelling theoretical evidence for the localized nature of 4f electrons at ambient pressure and a new insight of weakly interacting ferromagnetic chains. These findings establish a fundamental basis for elucidating pressure-induced quantum criticality in $CeRh_6Ge_4$.

References

- J. Otsuki, K. Yoshimi, H. Shinaoka, H. O. Jeschke, Phys. Rev. B 110, 035104 (2024).
- [2] H. Shinaoka, J. Otsuki, M. Kawamura, N. Takemori, K. Yoshimi, SciPost Phys. 10, 117 (2021).
- [3] J. Otsuki, K. Yoshimi, H. Shinaoka, Y. Nomura, Phys. Rev. B 99, 165134 (2019).
- [4] S. Itokazu, A. Kirikoshi, H. O. Jeschke, J. Otsuki, in preparation.