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To obtain large magnetoelectric coupling in

multiferroic materials, multiferroic interfaces

are promising, because single-phase multifer-

roic materials exhibit typically antiferromag-

netism preventing from having net magnetiza-

tion [1, 2]. In addition to multiferroic inter-

faces, many types of magnetic interfaces are of

fundamental importance to enhance the per-

formance of magnetic materials. Nevertheless,

our understanding from electron theory is far

from being satisfactory. Since first-principles

calculations of magnetic interfaces are compu-

tationally challenging, such study is also of im-

portance in the sense of large scale computa-

tions.

In this project, we performed first-principles

calculations of magnetic interfaces related with

multiferroic materials [3–5] and permanent

magnets [6–8]. We demonstrated enhance-

ment of magnetoelectric coupling by insertion

of Co atomic layer into Fe3Si/BaTiO3(001) in-

terfaces from first principles [3]. As is shown

in Fig. 1, the interface Co monolayer helps

the interface ferroelectric polarization exhibit

enough, whereas the interface electric polar-

ization is killed by Si without the Co mono-

layer at the interface. Other transition-metal

monolayers are also investigated [4]. In addi-

tion, crystal-growth mechanism was also clari-

fied for Co2FeSi and Co2MnSi films on single-

crystalline oxides by identifying the initial dis-

order at the deposition and the formation en-

ergy of random alloys relative to ordered al-

loy [5] by using both of OpenMX [9] and Akai-

KKR [10]. Substantial progresses were ob-

tained also for microstructure interfaces in per-

manent magnets [6–8].
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Figure 1: Relative displacements ∆O−Ti = zO −
zTi in the tetragonal BaTiO3(001) film for each in-
terface. For the Fe(Y)Si(Z) case, average values
for ∆O−Ti are shown. The first layer TiO2(1) is
the interface layer, whereas the fifth layer TiO2(5)
has the bulk atomic positions of BaTiO3.
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