Systematics of Curie temperature in rare earth permanent magnet materials

H. Akai

Institute for Solid State Physics, University of Tokyo Kashiwa-no-ha, Kashiwa, Chiba 277-8581

Curie temperatures $T_{\rm C}$'s of permanentmagnet materials $R_2(\text{Fe,Co})_{14}B$, $R_2(\text{Fe,Co})_{17}$, and $RFe_{11.5}Ti_{0.5}$ (R = La, Ce, ..., Lu, Y), are calculated within the mean field approximation using the exchange coupling constants J_{ij} 's that are obtained by first-principles KKR-Green's function method[1]. While the agreement between the calculations and experiments is rather well for the Co-based systems, there arise some discrepancies in the case of Fe-bases systems. Despite these discrepancies, however, the systematic changes seen in $T_{\rm C}$ as the rare earth element R changes across the lantanoid are fairly well reproduced by the calculation. In the case of R_2 Fe₁₄B, the discrepancies can be largely diminished by using J_{ij} 's that are calculated for local-moment disordered states (LMD), which is considered to correspond to the paramagnetic state above $T_{\rm C}$, as is shown in Fig.1 and 2. However, this is not the case in general: the discrepancies seen in R_2 Fe₁₇ (FIg. 3), cannot be remedied. From the analyses of calculated and experimental data, it is concluded that data assimilations are possible and necessary to make reasonable predictions of $T_{\rm C}$ for rare earth permanentmagnet materials, in particular, the Fe-based ones.

References

[1] H. Akai, AkaiKKR, http://kkr.issp.u-tokyo.ac.jp/(2002).

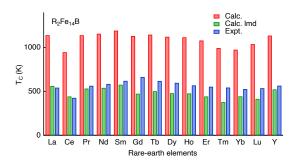


Figure 1: Calculated $T_{\rm C}$ of $R_2{\rm Fe}_{14}{\rm B}$ compared with experiments.

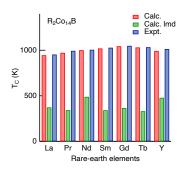


Figure 2: Calculated $T_{\rm C}$ of $R_2{\rm Co}_{14}{\rm B}$ compared with experiments.

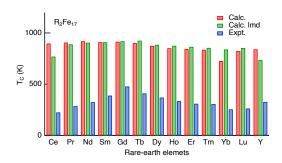


Figure 3: Calculated $T_{\rm C}$ of $R_2{\rm Fe}_{17}$ compared with experiments.