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The competition between order and disorder 

in materials leads to a wide variety of materials 

functionalities such as electronic, ionic, and 

thermal conductivity/insulation and catalytic 

activity. However, because of the huge number 

of degrees of freedom in disordered systems, 

successes in theory-driven design of such 

functionalities have been rather limited. In this 

research project, we tackled this problem 

through a combination of first-principles 

calculation and machine learning.  

For disordered crystalline systems, we 

employed our abICS (ab Initio Configuration 

Sampling) framework for deriving an on-lattice 

neural network model from first-principles 

calculations [1] and used that to perform 

replica-exchange Monte Carlo sampling. One 

system that we have been examining is heavily 

Sc-doped BaZrO3, which is known as a 

promising perovskite proton conductor for solid 

oxide fuel cells [2]. The oxygen vacancy is 

known to be the active site for the hydration 

reaction, which is the key reaction to introduce 

protons into the system. However, it is yet 

unclear which of the three types of vacancy 

environments, Sc-VO-Sc, Sc-VO-Zr, or Zr-VO-

Zr, are responsible for the hydration behavior. 

Using abICS, we have clarified that the former 

two are active sites for hydration, while the Zr-

VO-Zr site seldom exists under normal 

thermodynamic conditions and contributes little 

to the hydration reaction [3]. 

In the case of amorphous systems, we 

considered the use of the neural network 

potential (NNP) approach originally proposed 

by Behler and Parinello [4]. Although the 

neural network potential methodology seems to 

be a well-established approach at this point, we 

have found that it is quite a challenge to apply 

to many-component glass systems. This is 

because the NNP requires that the training set 

sufficiently covers the thermodynamically 

relevant configuration space, which will be 

huge for many-component glasses. We observe 

regularly that NNP molecular dynamics (MD) 

calculations ‘fall apart’ and exhibit completely 

unphysical structures after it wonders into 

regions of previously unlearned configuration 

space. To tackle this issue, we have been trying 

an active learning cycle approach where we 
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take structures from the NNP-MD trajectory, 

perform DFT calculations on those structures, 

add them to the training set, and run the NNP-

MD again with the new NNP. As shown in  

Fig. 1 for the AgI-As2Se3 superionic mixed 

glass system, increasing the number of cycles 

leads to improvement in the NNP predictions, 

although we have not been able to fully 

converge the low energy structures yet. 

We have also been examining the feasibility 

of training on DFT data using high-cost 

functionals such as the HSE06 hybrid. Since it 

is not feasible to obtain a long enough MD 

trajectory to use as the training set with HSE06, 

we first performed first-principles MD using 

the relatively low-cost GGA functional. 

Afterwards, we took a subset of the structures 

(~1500 structures) and recalculated them using 

HSE06, which were then used as the training 

set in NNP training. This approach was applied 

to amorphous GeO2, and we were able to obtain 

structure factors in excellent agreement with 

experiment (Fig. 2). This shows that NNP 

technology is promising for realizing long-time 

and large-scale MD simulations with the 

accuracy of high precision (and high cost) 

electronic structure methods. 

 

 

Fig. 1: Improvement of NNP accuracy with 

active learning iterations for AgI-As2Se3 

 
Fig. 2: Total structure factors from NNPs 

trained on various functionals and compared to 

experiment. 
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