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Abstract

In this activity report, we overview open-

source software mVMC (many-variable vari-

ational Monte Carlo), which can perform

the variational Monte Carlo calculations with

many variational parameters for a wide range

of the quantum many-body systems. We also

show its recent applications to the high-Tc su-

perconductivity and the quantum spin liquid.

In the first part of the report, we explain the

basic properties of mVMC including the Monte

Carlo sampling method, implemented wave-

functions, optimization methods (the steepest

descend method and the stochastic reconfigu-

ration method), and the recent extension to

simulations in the grand canonical ensemble.

As applications of mVMC, we first show the

analysis of the interfaces of the cuprates. A

recent experiment shows that the supercon-

ducting temperature is pinned at optimal value

in the bulk compound at the interfaces of the

cuprates (La2CuO4/La2−xSrxCuO4) irrespec-

tive of the hole doping ratio. By using mVMC,

we solve an effective model for the interfaces

and reproduce the anomalous pinning at the

interfaces. We also clarify the origin of the pin-

ning is the inter-layer phase separation, which

dissolves inner-layer phase separation through

the reconstruction of the hole densities around

the interfaces. Then, we show the application

of mVMC to the quantum spin liquid in the

Kitaev model (Kitaev spin liquid). By using

the grand canonical ensemble, we show that

mVMC can reproduce the Kitaev spin liquid.

1 Introduction

Correlation effects among electrons in solids

induce many intriguing phenomena such as

the high-Tc superconductivity [1, 2, 3] and the

exotic elementary excitations in the quantum

spin liquids [4]. To reveal how and why the

correlation effects induce such exotic phenom-

ena, it is necessary to develop numerical meth-

ods that can accurately treat the correlation

effects.

The variational Monte Carlo (VMC) method

(for reviews see Refs. [5, 6]) is one of the

promising methods for performing accurate

analysis of correlated electrons. The VMC

method was first used for analyzing the prop-

erties of the quantum liquids of He4 [7] and

He3 [8]. As the optimization of many vari-

ational parameters is a difficult problem, the

number of variational parameter was limited

up to around ten or one hundred (102) for a

long time. After the proposal of the stochas-

tic optimization (SR) method [9, 10] proposed

by Sorella, we can optimize more than one

thousand (103) variational parameters. By

using powerful supercomputers and the im-

proved SR method [11], it is now possible to

optimize more than several hundred thousand

(105) variational parameters.

In the 2016 fiscal year, we have devel-

oped open-source software mVMC [12, 13,

14], which can perform the many-variable

variational Monte Carlo method for a wide

range of Hamiltonians of correlated fermion

systems. The development of mVMC has



been supported by “Project for advance-

ment of software usability in materials sci-

ence (PASMS)” [15], which is managed by the

center of the supercomputer at Institute for

Solid State Physics. We note that the code

of mVMC [16, 17] was originally written by

Daisuke Tahara, who was a graduate student

in Imada group in the University of Tokyo.

Based on his code, several people including au-

thors have improved and added new functions

in mVMC.

In the past decade, mVMC has been applied

to a wide range of quantum many-body sys-

tems such as the frustrated Heisenberg mod-

els [18, 19], the Hubbard models at half fill-

ing [16, 17], the doped Hubbard models [16, 20,

21, 22], and the Kondo-lattice models [23, 24].

mVMC has also been applied to more realis-

tic Hamiltonians such as ab initio low-energy

Hamiltonians for the iron-based superconduc-

tors [25, 26, 27, 28], the organic conductor [29],

and the cuprates [30, 31]. As we show later,

mVMC has been applied to the interfaces of

cuprates (multi-layer Hubbard model) [32]. It

is also possible to apply mVMC to the spin-

orbit coupled systems including the Kitaev

spin liquid [33, 34, 35, 36] and the systems

with electron-phonon couplings [37, 38]. Fur-

thermore, recent studies reveal that mVMC

can be used for the non-equilibrium calcula-

tions [39, 40] and the finite-temperature calcu-

lations [41].

In this activity report, we briefly explain the

basic properties of mVMC and its recent appli-

cations to strongly correlated electron systems.

This report is organize as follows: In Sec. 2,

we detail the models that can be treated by

mVMC, Monte Carlo sampling method, wave-

functions implemented in mVMC, and opti-

mization methods. We also describe the recent

implementation of the grand canonical ensem-

ble in mVMC in Sec. 2.5. In Sec. 3, we show

applications of mVMC to the interfaces of the

cuprates [32], and the Kitaev model [36]. Sec-

tion 4 is devoted for summary and discussions.

2 Basic of mVMC

In this section, we describe the models that can

be treated by mVMC, Monte Carlo sampling

in the VMC method, and the wavefunctions

implemented in mVMC. We detail the stochas-

tic reconfiguration method, which enables us

to optimize many variational parameters. We

also explain how to perform VMC simulations

in the grand canonical ensemble, which has

been recently implemented in mVMC. We note

that VMC simulations in the grand canonical

ensemble cannot be performed in the released

version, which will be available in near future.

2.1 Model

By using mVMC, users can treat the general

Hamiltonians defined as

H = HT +HI , (1)

HT = −
∑
I,J

tIJc
†
IcJ , (2)

HI =
∑

I,J,K,L

IIJKLc
†
IcJc

†
KcL, (3)

where capital characters I, J,K,L denote the

site indices including the spin degrees of free-

dom (σ =↑ or ↓), i.e., I = (i, σ), where i

represents the ith site. Here, c†I (cI) is the

creation (annihilation) operator of an electron

on site I. This Hamiltonian includes the ar-

bitrary one-body transfers and two-body in-

teractions in the particle-conserved systems.

General one-body potential tIJ represents the

hopping between site I and site J . General

two-body interaction IIJKL represents the in-

teraction which annihilates a particle at site J

and a particle at site L, and creates a particle

at site I and a particle at site K.

As a special case of the general Hamilto-

nian defined in Eq. (3), we can treat the lo-

calized spin Hamiltonian such as the Heisen-

berg model by prohibiting the doubly occu-

pied sites and the vacancy sites in the Monte

Carlo samplings. It is also possible to treat

the Kondo-lattice model, where the localized



spins and itinerant electrons coexist. We note

the spinless-fermion models can be treated by

restricting Monte Carlo samplings in the fully

polarized states (e.g., samplings only in σ =↑
states).

Users of mVMC can perform VMC calcula-

tions by preparing one input file whose length

is typically less 10 lines for the standard models

such as the Hubbard model and the Heisenberg

model. Details of user interfaces are shown in

Ref. [14]. Tutorials for mVMC and some script

files for the standard models can be found in

the GitHub repository (mVMC-tutorial) [42].

2.2 Monte Carlo sampling

Here, we explain how the Markov-chain Monte

Carlo sampling is used in the VMC method.

In the VMC method, the expectation value of

the physical quantities A is expressed by

⟨A⟩ = ⟨ψ|A|ψ⟩
⟨ψ|ψ⟩

=
∑
x

⟨ψ|A|x⟩⟨x|ψ⟩
⟨ψ|ψ⟩

=
∑
x

ρ(x)
⟨ψ|A|x⟩
⟨ψ|x⟩

, (4)

ρ(x) =
| ⟨x|ψ⟩ |2

⟨ψ|ψ⟩
, (5)

where |ψ⟩ is a many-body wavefunction and |x⟩
denotes a complete basis such as the real-space

configuration.

From Eq. (4), by performing the Markov-

chain Monte Carlo sampling with respect to

the weight ρ(x), i.e., by generating the real-

space configurations according to the weight

ρ(x) iteratively, we can evaluate ⟨A⟩ as

⟨A⟩ ∼ 1

NMC

∑
x

⟨ψ|A|x⟩
⟨ψ|x⟩

, (6)

where NMC is the number of Monte Carlo sam-

plings. It should be noted that the ρ(x) is obvi-

ously positive definitive and the infamous sign

problem never appears in the VMC method.

In mVMC, we use the Mersenne twister [43]

for generating pseudo random numbers.

2.3 Wavefunction

Wavefunctions implemented in mVMC are

given as

|ψ⟩ = PL|ϕPf⟩, (7)

where |ϕPf⟩ denotes the pair-product wave-

functions, L denotes the quantum-number pro-

jectors such as the total-spin and the momen-

tum projections, and P denotes the correlation

factors such as the Gutzwiller and the Jastrow

factors.

Because the details of the quantum-number

projectors and the correlation factors are

shown in Ref. [14], in this report, we only ex-

plain the several variations of the pair-product

wavefunction |ϕPf⟩. The general form of the

pair-product wavefunction is given as

|ϕPf⟩ = |ϕGC⟩ = exp

∑
I,J

FIJc
†
Ic

†
J

 |0⟩ , (8)

where FIJ is treated as the variational pa-

rameters. This is nothing but the general-

ized Bardeen-Cooper-Schrieffer (BCS) wave-

functions, which include both singlet and

triplet pairings. The inner product between

|ϕGC⟩ and |x⟩ is represented as the Pfaffian

of a skew-symmetric matrix constructed from

the pairing FIJ , which is detailed in Sec. 2.5.

Although it is possible to directly treat the

general form of the pair-product wavefunction,

there is no necessary to use |ϕGC⟩ for particle-
number conserved systems. In other words, we

need to employ |ϕGC⟩ only when the particle-

number conservation is explicitly broken in tar-

get Hamiltonians.

To treat particle-number conserved systems

efficiently, we often use the particle-number

fixed wavefunctions defined as

|ϕPf⟩ = |ϕSGC⟩ =

∑
I,J

FIJc
†
Ic

†
J

Ne/2

|0⟩, (9)

where Ne is the particle number. Furthermore,

for systems where the total value of Sz is fixed



to 0, we can use the anti-parallel Pfaffian wave-

function defined as

|ϕPf⟩ = |ϕAP−Pf⟩ =

∑
i,j

fijc
†
i↑c

†
j↓

Ne/2

|0⟩.

(10)

Clearly, by employing the restriction on the

total value of Sz, the number of variational

parameters can be reduced. Thus, to reduce

the numerical cost, it is better to impose the

restrictions on the pair-product wavefunctions

if it is possible.

2.4 Optimization method

The key procedure in the VMC method is how

to optimize the variational parameters α to

lower the energy E according to the variational

principle. As an optimization method, the gen-

eral gradient method is often used, which is

given as

∆α = αnew − αold = −ηX−1g, (11)

gk =
∂E

∂αk
, (12)

where η is a small constant and X is matrix

whose dimension is the number of variational

parameters. If we choose the identity matrix as

X, the optimization method is called the steep-

est decent (SD) method. As we show later, the

SD method do not efficiently work for optimiz-

ing many variational parameters.

In the stochastic reconfiguration (SR)

method [9, 10], we take X as the overlap ma-

trix S, which is defined as

Sαβ = ⟨ψ̄α|ψ̄β⟩, (13)

|ψ̄α⟩ =
∂|ψ̄⟩
∂α

, (14)

|ψ̄⟩ = |ψ⟩√
⟨ψ|ψ⟩

. (15)

As it is mentioned in the literature [14, 39,

41, 14, 44], the SR method is nothing but the

imaginary-time evolution based on the time-

dependent variational principle. As we show

later, the SR method works well for optimiza-

tion of many-variational parameters. We note

the natural gradient method [45] used in the

field of the neural network is the same as the

SR method (the overlap matrix is called natu-

ral gradient in the filed of the neural network).

In Fig. 1, we show the optimization pro-

cesses by the SD method and the SR method

by taking 4×4 Hubbard model as an example.

For both the random initial state and the ini-

tial state made from the unrestricted Hartree-

Fock (UHF) solutions, the SR results can reach

the ground state faster than than the SD re-

sults. In our experience, for many variational

parameters, the speed of the convergence by

the SD method is always slower than the SR

method.

2.5 Grand canonical ensemble

The present mVMC package can be applied to

a wide range of quantum lattice models. How-

ever, only systems where the total number of

the particles is fixed are applicable. Due to

this restriction, we cannot treat Hamiltonians

which does not conserve the number of the par-

ticles such as the BCS Hamiltonian.

Recently, we have implemented the new

functionality to perform VMC simulations in

the grand canonical ensemble (GCE). The em-

ployed mean-field part in the trial wavefunc-

tion [Eq. (7)] is the generalized BCS wave-

function without the particle-number projec-

tion, namely

|ϕ⟩ = exp

∑
I,J

fIJc
†
Ic

†
J

 |0⟩ . (16)

Here I = (i, σ) and the pairing fIJ is treated

as the variational parameters.

We generate Monte Carlo samples in the

GCE by using Metropolis-Hastings algorithm.

The acceptance probability p(x→ y) is defined



10
1

10
0

10
-1

10
-2

10
-3

Δ
E

10
0

10
1 10

2 10
3

SR step

SD (random)

SD (UHF)
SR (random)

SR (UHF)

Figure 1: Optimization processes for 4×4 Hub-

bard model for U = 4 and t = 1 at half filling

with periodic boundary conditions. The rel-

ative energy is defined as ∆E = (EmVMC −
Eexact)/Ns, where EmVMC (Eexact) represents

the energy obtained by mVMC (exact diago-

nalization). Ns denotes the number of sites.

We do not impose the sublattice structure in

the variational parameters and the number

of variational parameters are 266. Random

(UHF) means that the initial state of the wave-

functions is prepared by random variational

numbers (the UHF solution).

as

p(x→ y) = min

(
1,

∣∣∣∣P (y) ⟨ϕ|y⟩P (x) ⟨ϕ|x⟩

∣∣∣∣2 g(x|y)g(y|x)

)
,

(17)

where g(y|x) is the proposal distribution for

proposing a new configuration y from a given

one x with the total number of the particles

Ne = 2N . Although g(y|x)/g(x|y) = 1 for sys-

tems with the fixed particle number, we should

be careful to consider the ratio of the proposal

distributions g(y|x)/g(x|y) when two particles

is added or removed from the old configuration

x. This is because the dimension of systems for

2N ± 2 is different from that for 2N . For ex-

ample, the ratio when a new configuration is

generated by adding two particles is

g(y|x)
g(x|y)

=
(2Ns − 2N)(2Ns − (2N + 1))

(2N + 2)(2N + 1)
.

(18)

The inner product between the BCS wave-

function |ϕ⟩ and the real space configuration

|x⟩ for Ne = 2N is given as

⟨x|ϕ⟩ = Pf[X], (19)

XIJ = fRIRJ
− fRJRI

, (20)

|x⟩ = c†R1
· · · c†R2N

|0⟩ . (21)

Here, X is a skew symmetric matrix whose di-

mension is 2N . It is worth noting that even

in the GCE, the fast update techniques for

calculations of Pfaffian and inverse matrices

can be used when a real-space configuration is

updated by adding or removing two particles.

In this report, we introduce the fast update

scheme when the electron configuration |x⟩ is

updated as |x′⟩ = c†R2N+1
c†R2N+2

|x⟩. The skew

symmetric matrix X ′ with the 2N + 2 dimen-

sion is described as

X ′ =

(
X B

−BT C−1

)
, (22)

BT = −

(
fR1R2N+1

· · · fR2NR2N+1

fR1R2N+2
· · · fR2NR2N+2

)
,

(23)

C−1 =

(
0 fR2N+1R2N+2

fR2N+2R2N+1
0

)
.

(24)

By using the following lemma

Pf

(
A B

−BT C−1

)
= PfA× Pf

(
C−1 +BTA−1B

)
, (25)

the new Pfaffian PfX ′ can be described as

PfX ′ = PfX × PfD, (26)

D = C−1 +BTA−1B. (27)

Since PfX and X−1 have been already known,

2 × 2 skew symmetric matrix D can be easily



computed and its numerical cost O(N2). The

inverse matrix X ′−1 is computed as

X ′−1
=

(
X ′−1

11 X ′−1
12

X ′−1
21 X ′−1

22

)
, (28)

X ′−1
11 = X−1 −X−1BDBTX−1, (29)

X ′−1
12 = −X−1BD−1, (30)

X ′−1
21 = D−1BTX−1, (31)

X ′−1
22 = D−1, (32)

from the LDU decomposition of X ′ defined in

Eq. (22). The numerical cost for evaluation of

X ′−1 is O(N2).

3 Applications

In this section, we show applications of mVMC

to the superconductivity at the interfaces of

the cuprates [32] and the quantum spin liquid

in the Kitaev model [36].

3.1 Application to interfaces of

cuprates

In the cuprates, it is well known that the high-

Tc superconductivity appears by doping carri-

ers into the Mott insulators. Although there

are many families of cuprates, it is common

that the critical temperatures of superconduc-

tivity show dome-like structures as a func-

tion of the doping rates [1, 2, 3] as shown in

Fig. 2(a). In other words, it is the common

sense that the critical temperatures are opti-

mized at the specific doping rate.

Recent experiment of the cuprates inter-

faces by the Božović group [46], however,

challenges the common sense in the cuprates.

In the experiment, they make the clean in-

terfaces (La2CuO4/La2−xSrxCuO4) between

the insulating mother compounds of the

cuprates (La2CuO4) and the over-doped

metallic cuprates (La2−xSrxCuO4), and they

examine superconducting properties at the in-

terfaces. Although no superconductivity ap-

pears both in the mother compound and over-

doped cuprates in the bulk solid, they have

doping rate

Bulk

Interfaces

temperature

SC phase

AF phase

0

0

optimal value

Tc is pinned at optimal value

(a)

(b)

doping rate

temperature

SC phase

Figure 2: Schematic picture for the experi-

mental phase diagram for (a) bulk solid of the

cuprates and (b) interfaces of the cuprates.

AF (SC) phase means antiferromagnetic (su-

perconducting) phase.

found that the superconductivity appears at

the interfaces of them. They also find that the

superconducting temperatures do not depend

on the doping rate in the metallic cuprates as

is schematically shown in Fig. 2(b). Further-

more, they also show that the superconduct-

ing temperature is nearly pinned at the opti-

mal value (Tc ∼42K) of the bulk cuprates of

La2−xSrxCuO4. This pinning behavior of Tc is

in a sharp contrast with the bulk system where

a dome-like doping dependence of Tc has been

commonly found in the doping concentration

dependence.

To clarify the origin of the unexpected pin-

ning of Tc observed at the interfaces of the

cuprate, we analyze the multi-layer Hubbard



model [shown in Fig. 3(a)] by using mVMC,

which is one of the simplest theoretical mod-

els for the interfaces. The Hamiltonian of the

model is given as

H = −t
∑

⟨i,j⟩,σ,ν

(c†iσνcjσν + h.c.)

− tz
∑

i,σ,⟨ν,ν′⟩

(c†iσνciσν′ + h.c.)

+ U
∑
i,ν

ni↑νni↓ν −
∑
i,σ,ν

ϵνniσν , (33)

where c†iσν (ciσν) is the creation (annihilation)

operator of an electron at ith site on the νth

layer with spin σ and niσν = c†iσνciσν is the

corresponding number operator. For simplic-

ity, we consider only the nearest-neighbor pair

for the intra-layer transfer t and the inter-layer

transfer tz. In this calculation, we consider the

five-layer Hubbard model (0 ≤ ν ≤ 4). We em-

ploy the parameter values within the realistic

constraint of the cuprate interface suggested

from the experimental results and ab initio cal-

culations, i.e., for the inter-layer transfer we

take tz = 0.05t and the onsite Coulomb inter-

action is set to U = 8t. In this analysis, we

set the energy unit t = 1 (∼ 0.5 eV in the

cuprates).

The layer-dependent onsite level energy is

represented by ϵν . From the experiment, it is

known that the inter-layer diffusion of Sr atoms

occur around the interfaces [47, 46]. To real-

istically mimic the inter-layer diffusion effect

that makes the onsite energy level gradually

change within a few layer, we employ the fol-

lowing layer dependent onsite energy

ϵν+1 = ϵν −∆ϵ (1 ≤ ν ≤ 3), (34)

where ∆ϵ is a constant. The layer dependence

of the onsite level energy is shown in Fig. 3 (b).

We assume that the 0th is insulating and the

other layers (ν ≥ 1) are metallic. To make the

0the layer insulating, we take ϵ0 = ϵ1 + 1.

By using mVMC, we analyze the multi-

layer Hubbard model for several choices of ∆ϵ.

We calculate the layer-dependent hole density

ins.

metal

layer

multi-layer model(a)

insulator

−ε

metal

 5  4  3  2  1  0  -1  -2 -3

Sr concentration
in experiment

 layer

Δε

(b)

model for level

x

Figure 3: (a) Schematic picture of the the-

oretical models for the interface of cuprates.

The dotted line denotes the interface between

the metallic and insulating layer. The color

schematically illustrates the change in the car-

rier concentration obtained by mVMC calcu-

lations. (b) Layer dependence of the onsite

level energy employed in the multi-layer Hub-

bard model (red line). In the metallic phase

around the interface, we assume that the on-

site energy level changes linearly. From this

layer-dependence of the onsite level energy, we

mimic the effects of interlayer Sr diffusion ob-

served in experiment [47]. We show the layer

dependence of the Sr concentration as blue

curves, which is taken from Ref. [47]

δν = 1−Nν/Ns, where Nν (Ns) is the average

electron number of the νth layer (the number

of the sites in each layer). We find that the

bulk hole density, δbulk = δ4, monotonically

increases as a function of ∆ϵ. This result in-

dicates that we can change the doping rate in

the metallic region by controlling ∆ϵ. Thus,

we can examine how the changes in the bulk

hold density affect the superconducting prop-

erties at the interfaces.

To investigate the superconducting proper-

ties, we calculate the layer-dependent equal-

time superconducting correlations of dx2−y2-



wave symmetry defined as

Pν(r) =
1

2Ns

∑
ri

[
⟨∆†

ν(ri)∆ν(ri + r)⟩+ h.c.
]
,

(35)

∆ν(ri) =
1√
2

∑
j

f(rj − ri)(ci↑νcj↓ν − ci↓νcj↑ν),

(36)

where ∆ν denotes the dx2−y2-wave supercon-

ducting order parameter at the νth layer, fd(r)

is the form factor that describes the dx2−y2-

wave symmetry, and δi,j denotes the Kro-

necker’s delta and r = (rx, ry). To estimate

the superconducting long-range order, we cal-

culate long-range limit of Pν(r), which is de-

fined as

P̄ν =
1

M

∑
2<r=|r|<

√
2L

Pν(r). (37)

where M is the number of vectors satisfying

2 < r = |r| <
√
2L (L represents the linear

dimension of each layer). For sufficiently large

L, this quantity converges to the square of the

superconducting order parameter (|⟨∆†
ν(r)⟩|2)

and we have actually shown that P̄ν allows

for a practical estimate of the superconduct-

ing long-range order in Ref. [20].

In Fig. 4(a), we plot the δbulk (metallic bulk

density) dependence of P̄ν . As a result, we find

that the superconductivity mainly appears at

the interface (the 1st layer [ν = 1]). Further-

more, we also find that the superconducting

correlations at the interface (P̄ν=1) is nearly

fixed to the constant value and we confirm that

its constant value is nearly equal to the maxi-

mum value in the bulk system, i.e., single-layer

Hubbard model. This result is well consistent

with experimental results where Tc is pinned

at the optimal value in the bulk. We note that

the same superconducting order parameter at

T = 0 naturally yields the same Tc.

In the analysis for the bulk cuprates, if

we simply ignore the effects of the long-range

Coulomb interactions, we find that the phase

separation occurs around half filling and the

doping rate
 1 (interface)

 0

layer 4
 3

 2

 P

0.4
0.36

0.32
0.28

 0

 0.01

metal

insulator

ν
(a)

Figure 4: (a) Superconducting correlations for

the multi-layer model. Superconducting cor-

relations are pinned at constant value at the

interface irrespective of the doping rate in the

metallic region.(b) Schematic picture for inter-

layer phase separation. The color denote the

charge density. Because of the inter-layer de-

grees of freedom, the instability toward the

phase separation in the inner layer is dissolved

through the reconstruction of the charge den-

sity around the interfaces.

superconducting correlations have maximum

value at the edge of the phase separation [48].

By comparing the results for the bulk system

and the interfaces, we find that instability to-

ward the phase separation existing in the bulk

system is automatically dissolved around the

interfaces by using the inter-layer degrees of

freedom as is schematically shown in Fig. 4(b).

In other words, the carrier density at the inter-

faces is always fixed at the optimal value in the

bulk system through the inter-layer phase sep-

aration, which dissolves the inner-layer phase

separation existing in the bulk system. This re-

sult shows that the interfaces provide an ideal

tool to stabilize superconductivity without fine

tuning of the doping rates.



3.2 Application to the Kitaev model

As an application in the GCE, we perform

VMC simulations on the optimization of the

ground state in the Kitaev model on the hon-

eycomb lattice [49]. The Kitaev model is de-

fined as

H =
∑

γ=x,y,z

∑
⟨I,J⟩∈γ−bond

KγS
γ
I S

γ
J , (38)

where I means a site index which includes a

unit-cell index i with a degree of freedom of

the unit cell α ∈ (A,B), i.e. I = (i, α). Ki-

taev proved that the ground state of the Kiteav

model can be analytically obtained and it is

the quantum spin liquid. In addition, for the

isotropic Kitaev model, non-Abelian anyons

emerge as the elementary excitation by ap-

plying magnetic fields, which are important

for the realization of the topological quantum

computing. Although it seems to be artificial

for the Ising interactions to have the depen-

dence on the bond direction, it was theoret-

ically proposed that the Kiteav interaction is

dominant in strongly correlated materials with

strong spin-orbit coupling [50]. Inspired from

this proposal, many researchers have tried to

synthesize Kitaev-like compounds and under-

stand how the Kitaev spin liquid can stably

exists.

One of the analytical ways to solve the Ki-

taev model is to use the Jordan-Wigner (JW)

transformation. It was shown that the origi-

nal spin Hamiltonian can be mapped onto the

spinless BCS Hamiltonian with many-body in-

teraction on z-bond by using the JW transfor-

mation defined as

S+
j =

∏
k<j

(−2Sz
k) c

†
j , (39)

Sz
j = (nj −

1

2
), (40)

and its ground state can be described as the

BCS wavefunction[51, 52]. The fermionized

Kitaev model by the JW is represented as

H =
Jx
4

∑
i

(c†iA − ciA)(c
†
iB + ciB)

+
Jy
4

∑
i

(c†iB + ciB)(ci+e1,A − c†i+e1,A
)

+
Jz
4

∑
i

(2niB − 1)(2ni+e2,A − 1)

+Hboundary, (41)

where e1 and e2 are primitive translation vec-

tors for the honeycomb lattice. We clearly see

that there are the BCS terms, c†Ic
†
J and cIcJ ,

in Eq. (41). Hboundary means the boundary

term which includes string operators due to the

application of the JW transformation. When

the system satisfies the open boundary condi-

tion, this term is banished and thus the origi-

nal model defined in Eq. (38) can be exactly

mapped onto the fermionized one.

Figure 5 shows the optimization process of

VMC calculations in the antiferromagnetic Ki-

taev model by using two different basis; the

original spin basis and JW fermion basis. Both

are obtained by using a random initial state

which has the lowest energy at the 4000 SR

step in ten random states. We also perform the

ED simulation by using open-source software

HΦ[53], whose result is shown as the black thin

line in Fig. 5. It is clearly seen that the JW

fermion result converges to the exact ground

state. On the other hand, although the energy

by the conventional spin-basis wave function is

gradually decreased, it does not seem to reach

to the true ground state. This result indicates

that the JW fermion basis is more appropriate

for obtaining the Kitaev spin liquid without

falling into local minima during the optimiza-

tion process.

4 Summary

In this report, we first explained the basics of

mVMC. We explained that mVMC can treat

the general Hamiltonians with the arbitrary
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Figure 5: Optimization process in the antifer-

romagnetic Kitaev model for 4×3 unit cell and

Jx = Jy = Jz = 1. Red and blue lines show the

results by using Eqs. (8) and (9), respectively.

Black thin line represents the energy obtained

by using the exact diagonalization method.

one-body part and the arbitrary two-body in-

teractions. We also explained the Monte Carlo

sampling used in mVMC and the wavefunction

implemented in mVMC. We also explained

two optimization methods; the steepest de-

scent (SD) method and the stochastic recon-

figuration (SR) method. By taking the Hub-

bard model as an example, we showed that the

speed of the optimization by the SD method

is slower than that of the SR method. We

also detailed the recent extension of mVMC for

treating the systems without particle-number

conservation

Then, we showed two recent application of

mVMC. One is the application to the interfaces

of the cuprates. By solving the multi-layer

Hubbard model, which is an effective model

for the interfaces the cuprates, we showed that

the pinning of the Tc observed in the experi-

ment can be well reproduced. We also clari-

fied the origin of the pinning is the inter-layer

phase separation. This result indicates that in-

terfaces of the high-Tc superconductors offers

an ideal platform for stabilizing optimal super-

conductivity without fine tuning of the doping

rate.

Another application is the analysis of the Ki-

taev model. By performing the Jordan-Wigner

transformation, it is known that the Kitaev

model is exactly solved and the quantum spin

liquid appears. There is, however, the anoma-

lous part, which breaks the particle number

conservation, inevitably appears. To treat the

Kitaev model under the Jordan-Wigner trans-

formation, we used mVMC with the grand

canonical ensemble. As a result, mVMC with

the grand canonical ensemble works well for

reproducing the Kitaev spin liquid.
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