First-principles study on the nanoscale physics of Nd₂Fe₁₄B

Yasutomi TATETSU

Meio University, Biimata, Nago, Okinawa 905-8585

In 1970's, Re₂Fe₁₇, where Re represents rare earth elements, could be considered as permanent magnets. However, the Curie temperature ($T_c = 330$ K) was not high enough for permanent magnets. B was introduced into Re₂Fe₁₇ by Sagawa [1], who is the inventor of Nd-Fe-B sintered magnets, in order to increase the magnetic properties, for example, magnetic moment, magnetization, Curie temperature, etc. of Re₂Fe₁₇. This led to creating Nd₂Fe₁₄B known as the main phase of Nd-Fe-B sintered magnets. However, the role of B in Nd₂Fe₁₄B was not clearly studied from nanoscale physics.

We systematically studied the effects of B in Nd₂Fe₁₄B on the magnetic properties and electronic through first-principles states calculations [2]. We used OpenMX [3] mainly on System B for the present study. In order to understand how B changes the magnetic moment and magnetization of Nd₂Fe₁₄B, we calculated these two physical quantities of Nd₂Fe₁₄B, Nd₂Fe₁₄B₀ and Nd₂Fe₁₄. Nd₂Fe₁₄B₀ has the same lattice parameters and the atomic positions of Nd₂Fe₁₄B, but B is not present in it. Nd₂Fe₁₄ is a hypothetical material and its lattice parameters and atomic positions are optimized, therefore, these are not the same as $Nd_2Fe_{14}B$. We find that B does not increase the magnetic

moment and magnetization of Nd₂Fe₁₄B. We check the stability of Nd₂Fe₁₄X (X = B, C, N, O, F) by comparing the formation energies of Nd₂Fe₁₇X. We find that the formation energies of Nd₂Fe₁₄B or Nd₂Fe₁₄C become negative relative to that of Nd₂Fe₁₇B or Nd₂Fe₁₇C (see Fig.1). Our calculation result is in good agreement with the experimental fact that Nd₂Fe₁₄B and Nd₂Fe₁₄C stably exist. The main role of B in Nd₂Fe₁₄B is not to increase the magnetic properties but stabilizes the structure of Nd₂Fe₁₄B itself.

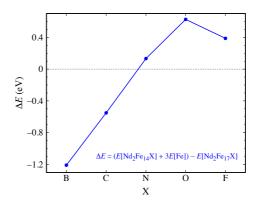


Figure 1. The formation energy of Nd₂Fe₁₄X.

References

[1] M. Sagawa *et al.*, J. Appl. Phys. 55, 2083 (1984).

[2] Y. Tatetsu *et al.*, Phys. Rev. Mater. 2, 0744100 (2018).

[3] http://www.openmx-square.org