Prediction of properties of organic ferroelectrics and piezoelectrics by first-principles calculation

Shoji ISHIBASHI

Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba, Ibaraki 305-8565

Organic ferroelectrics and piezoelectrics are promising materials since they contain neither toxic nor rare elements. Recently, we observed the transition from an antiferroelectric (AFE) phase to a ferroelectric (FE) phase under a strong electric field on squaric acid (SQA) and proposed two possible FE phases (FE- α and FE- β) with their molecular arrangements and space groups [1]. The experimentally observed FE phase is thought to be the FE- α phase. On the other hand, the FE- β phase has not yet been experimentally confirmed.

In the present study, by computationally applying a static electric field [2], we simulate the AFE-to-FE transitions in SQA [3]. The calculations are performed using the computational code QMAS. As for the exchange-correlation functional, to reproduce the lattice parameters accurately, the rVV10 functional [4] is used.

Depending on the direction of the electric field, two different metastable ferroelectric (and piezoelectric) phases have been found. One of them corresponds to the experimentally confirmed FE- α phase, whereas the other corresponds to the FE- β phase. The spontaneous polarization values of the phases are 14.5 and 20.5 μ C/cm², respectively. They are relatively high among those of the existing organic ferroelectrics. Their crystal structures are obtained as a function of the electric field. Significant converse piezoelectric effects are observed for both the phases as shown in Fig. 1 (~10 pm/V).

Figure 1: Variation in lattice parameters under electric field. $E \parallel$ (upper left) \boldsymbol{x} , (upper right) \boldsymbol{z} , (lower left) $\boldsymbol{x}+\boldsymbol{z}$, and (lower right) $\boldsymbol{x}-\boldsymbol{z}$.

References

- S. Horiuchi, R. Kumai, and S. Ishibashi: Chem. Sci. 9 (2018) 425.
- [2] I. Souza, J. Iñiguez, and D. Vanderbilt: Phys. Rev. Lett. 89 (2002) 117602.
- [3] S. Ishibashi, S. Horiuchi, and R. Kumai:Phys. Rev. B 97 (2018) 184102.
- [4] R. Sabatini, T. Gorni, and S. de Gironcoli: Phys. Rev. B 87 (2013) 041108(R).