OACIS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source framework for execution management of numerical simulation. By registering target simulators, information at the time of execution (parameters, date and time, hostname, version of simulators, etc.) and calculation results are saved automatically on database. Job submission and browse of job status can be performed efficiently from web browsers.

To Detail

Molpro

  • Level of openness 0 ☆☆☆
  • Document quality 2 ★★☆

Payware for first-principles quantum chemical calculation. This application performs molecular orbital calculation based on Hartree-Fock approximation, density functional method, and post-HF methods such as MP, f12, multi-configuration SCF, and coupled cluster method. It also implements calculation by path-integral instanton, quantum Monte Carlo, and density-matrix renormalization group method.

To Detail

VisBAR

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆
A set of Python scripts for post-simulation data analysis of large-scale electronic state calculations. Currently the open script is ‘VisBAR Wave Batch’ that visualizes many wavefunctions, as isosurfaces, simultaneously. The script generates picture files in PNG and other formats from grid data files in the Gaussian cube format. Many data files can be treated in parallelism by MPI.
To Detail

OpenFermion

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Open-source software for quantum computing in quantum chemistry. OpenFermion can map the ab-initio Hamiltonian of an target molecular or material in second quantization to that in qubits. Parameters of the Hamiltonian is estimated by using other software for first-principles calculations. OpenFermion also provides users plugins to support integration with apps for quantum circuits and quantum simulators.

To Detail

Strawberry Fields

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Python library for the design, simulation, and optimization of continuous-variable quantum optical circuits. It has high-level functions for solving problems including graph and network optimization, machine learning, and chemistry, and can perform training and optimization of quantum programs using the TensorFlow backend.

To Detail

ecalj

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source program package for first-principles calculation based on a mixed augmented plane wave method (the PMT method). For various physical systems, this package performs electronic structure calculation and structure optimization by LDA, GGA, LDA+U and so on. It further can treat quasi-particle excitation with high accuracy by the quasi-particle self-consistent GW method. It implements several original methods not included in other program packages, and is maintained by the version control system, Git.

To Detail

Siesta

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for first-principles calculation utilizing pseudo-potentials and atom-localized basis sets. This application is capable of performing electronic structure calculations, structural relaxation, and molecular dynamics in a wide range of systems based on density functional theory. By adopting atom-localized basis sets, it realizes high-speed electronic calculation and linear-scaling in suitable computer systems. It can also perform electronic conductance calculations based on non-equilibrium Green’s function method.

To Detail

abICS

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

Software framework for training a machine learning model to reproduce first-principles energies and then using the model to perform configurational sampling in disordered systems. It has been developed with an emphasis on multi-component solid-state systems such as metal and oxide alloys. At present, Quantum Espresso, VASP and OpenMX can be used as first-principles energy calculators, and aenet can be used to construct neural network potentials.

To Detail

MLIP

  • Level of openness 1 ★☆☆
  • Document quality 2 ★★☆

Software package that implements moment tensor potentials. Potentials can be trained and used for molecular dynamics calculations using LAMMPS. Active learning combined with molecular dynamics calculations is also available.

To Detail

Molden

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for pre- and post-processing for quantum chemistry calculation. This application can handle outputs from Gaussian, GAMESS, and MOPAC as well as the result of other applications via the Molden format. It supports many graphical interfaces such as Postscript, XWindows, VRML, and OpenGL, and performs visualization of molecular orbitals and electron density. It also produces animation videos of molecular vibration.

To Detail