MDACP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

MDACP (Molecular Dynamics code for Avogadro Challenge Project) is an efficient implementations of classical molecular dynamics (MD) method for the Lennard-Jones particle systems. MDACP Ver. 1.xx adopts flat-MPI and Ver. 2.xx adopts MPI+OpenMP hybrid parallelization.

To Detail

MOPAC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for semi-empirical quantum chemical calculation based on NDDO (neglect of diatomic differential overlap) approximation. This program calculates, for a given molecule or a crystal, molecular orbits and atomic forces, as well as vibration spectra, thermal quantities (heat of formation etc.), isotopic exchange effect, force constant, and so on. It can also treat radicals and ions.

To Detail

Meep

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for the electromagnetic field simulation based on the finite-difference time-domain (FDTD) method. Time-evolution of the electromagnetic field in the system written by 1-, 2-, and 3-dimensional orthogonal coordinates and cylinder coordinates can be calculated under various boundary conditions and spatial dependence of permittivity and permeability. The main programs are written by C++, and can be called from Python scripts.

To Detail

mumax3

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

An open-source application for micromagnetic simulation optimized for general-purpose computing on GPU. This application can calculate spatial distribution of magnetization with speed of more than 100 times compared with CPU calculation. This application can also treat the RKKY interaction, effect of spin injection, and Voronoi diagrams. It supports remote computing using its web-GUI system.

To Detail

myPresto

  • Level of openness 3 ★★★
  • Document quality 3 ★★★

Commercially-available free software for Computer-Aided Drug Development. It includes programs for compound database, protein-compound docking, structure-based drug screening, ligand-based drug screening, protein-ligand binding site prediction, molecular editor, physical property prediction, synthetic accessibility prediction, thermodynamic calculation including multi-canonical dynamics, and molecular dynamics simulations with and without acceleration using GPUs and MPI parallelization.

To Detail

MARBLE

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

An open-source application for molecular dynamics to simulate biopolymers such as proteins and nuclear acids. This application can perform high-speed molecular dynamics simulation by hybrid parallel computing maintaining high-accuracy energy conservation. This application also support high-speed calculation of long-range interaction based on the particle mesh Ewald method. The code is released under GPL lisense.

To Detail

MMSP

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A collection of C++ interfaces for simulation of mesoscale properties based on grid data. By using provided header files, one can easily construct programs for simulation of various phenomena such as solidification, crystal growth, and spinodal decomposition, based on a Monte Carlo method, cellar automaton, and a phase-field method. This interface supports parallel computing by MPI, and also provides converters of output files for visualization software such as ParaView.

To Detail

mVMC

  • Level of openness 3 ★★★
  • Document quality 2 ★★☆

A low-energy solver for a wide ranger of quantum lattice models (multi-orbital Hubbard model, Heisenberg model, Kondo-lattice model) by using variational Monte Carlo method. User can obtain high-accuracy wave functions for ground states of above models. Users flexibly choose the correlation factors in wavefunctions such as Gutzwiller, Jastrow, and doublon-holon binding factors and optimize more the ten thousand variational parameters. It is also possible to obtain the low-energy excited states by specifying the quantum number using the quantum number projection.

To Detail

MODYLAS

  • Level of openness 3 ★★★
  • Document quality 1 ★☆☆

MODYLAS is a highly parallelized general-purpose molecular dynamics (MD) simulation program appropriate for very large physical, chemical, and biological systems. It is equipped most standard MD techniques including free energy calculations based on thermodynamic integration method. Long-range forces are evaluated rigorously by the fast multipole method (FMM) without using the fast Fourier transform (FFT) in order to realize excellent scalability. The program enables investigations of large-scale real systems such as viruses, liposomes, assemblies of proteins and micelles, and polymers. It works on ordinary linux machines, too.

To Detail

Missing

  • Level of openness 2 ★★☆
  • Document quality 2 ★★☆

An application for atomic multiplet calculation used in X-ray spectroscopies. This application consists of several calculation modules and graphical user interface, and can perform multiplet calculation of atoms. It can take into account effect of crystal fields and charge transfer, both of which are important in transition-metal compounds, and can provide useful information to interpret experimental results obtained in various inner-shell electron X-ray spectroscopies.

To Detail